Researchers design and engineer artificial photosynthetic life-forms through endosymbiosis

Every plant, animal or other nucleus-containing cell also harbors an array of miniature "organs" that perform essential functions for the cell. In plants, for example, organelles called chloroplasts photosynthesize to generate energy for the organism. Because some organelles contain their own DNA and resemble single-celled organisms, scientists have long theorized that the evolution of complex life forms got its start when one cell engulfed another and the two learned to live in harmony – eventually forming, and belonging to, a single entity.

In a new study published in the journal Nature Communications, scientists reported that they have recapitulated this early event – called endosymbiosis – in yeast.

"We have designed and engineered artificial, genetically tractable, photosynthetic endosymbiosis between photosynthetic cyanobacteria and budding yeasts," said University of Illinois Urbana-Champaign chemistry professor Angad Mehta, who led the research. "And the engineered cyanobacteria perform chloroplast-like functions to support the growth of the yeast."

These combined life forms, called chimeras, survived and even reproduced by budding under optimal photosynthetic conditions, the team reported.

"They are able to propagate through at least 15 to 20 generations of growth," Mehta said.

The evolutionary origin of life forms known as eukaryotes – a category that includes plants and animals but also yeast and few other single-celled organisms – is still a mystery, but many scientists believe that endosymbiosis opened the door to the evolution of these complex life forms, Mehta said.

"We have essentially converted a nonphotosynthetic organism into a photosynthetic, chimeric life form," he said. "I believe that our new ability to build controlled, synthetic endosymbiotic chimera that can be genetically and metabolically manipulated, analytically studied and imaged, and computationally modeled and predicted will break the gridlock on our understanding of this remarkable evolutionary transformation."

The Moore–Simons Project on the Origin of the Eukaryotic Cell and the National Institute of General Medical Sciences at the National Institutes of Health supported this research.

Source:
Journal reference:

Cournoyer, J. E., et al. (2022) Engineering artificial photosynthetic life-forms through endosymbiosis. Nature Communications. doi.org/10.1038/s41467-022-29961-7.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Glutathione found to significantly reduce acetaldehyde levels and help relieve hangovers