Novel lipstick formula could offer protection against disease-causing microbes

NewsGuard 100/100 Score

Lipstick can be a confidence booster, enhance a costume and keep lips from chapping. But sharing a tube with a friend or family member can also spread infections. To develop a version with antimicrobial properties, researchers reporting in ACS Applied Materials & Interfaces have added cranberry extract to the formulation. Their deep red cream quickly inactivates disease-causing viruses, bacteria and a fungus that come in contact with it.

According to historians, people in ancient Egypt were the first to use make-up, applying pastes made from minerals and other substances in their environment. The formulations have evolved over the centuries, but now researchers have come full circle, looking again toward natural ingredients. For example, recent studies have reported that lipstick formulas incorporating natural colorants, such as red dragon fruit, can result in products with both vibrant colors and antimicrobial activity. And previously, cranberry extract has been shown to inactivate viruses, bacteria and fungi. So, Ángel Serrano-Aroca and colleagues wanted to use cranberry extract to create a deep red lip tint with antimicrobial properties.

The research team mixed cranberry extract into a lipstick cream base, which contained shea butter, vitamin E, provitamin B5, babassu oil and avocado oil. In experiments, the reddened cream was added to cultures containing different viruses, bacteria and one fungal species. Both enveloped and non-enveloped virus types were completely inactivated within a minute of contact with the cranberry-containing cream. And the multidrug-resistant bacteria, mycobacteria and fungus were substantially inactivated within five hours of applying the cream. The researchers suggest that their novel lipstick formula could offer protection against a variety of disease-causing microorganisms.

Source:
Journal reference:

Tuñón-Molina, A., et al. (2022) Antimicrobial Lipstick: Bio-based Composition against Viruses, Bacteria, and Fungi. ACS Applied Materials & Interfaces. doi.org/10.1021/acsami.2c19460.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Rising antibiotic resistance prompts shift to ecological research strategies in infection control