POSTECH team engineers an artificial kidney for early detection of adverse drug reactions

The kidney plays a vital role in maintaining homeostasis within the body by eliminating toxic and superfluous substances in the bloodstream, including waste generated during metabolic processes, through urine. Nevertheless, toxicity can also be induced in the kidney from certain medications. Recently, a research team from POSTECH has engineered an artificial kidney that allows for the early detection of adverse drug reactions.

The POSTECH research team led by Professor Dong-Woo Cho and Professor Jinah Jang (Department of Mechanical Engineering) fabricated a glomerular microvessel-on-a-chip, which includes glomerular endothelial cells, podocyte layers, and a glomerular basement membrane (GBM) using a single step fabrication process. The research findings have been published in the esteemed journal, Biofabrication.

Nephron is the fundamental structural and functional unit in the kidney. It encompasses a network of small blood vessels called the glomerulus, twisted into a convoluted thread-like shape, contributing to forming kidney corpuscle along with glomerular capsules. It also plays a role in removing waste from the blood. When an excessive quantity of drugs is administered, the nephron is often the first organ to exhibit drug toxicity in the body.

Given this challenge, efforts have been directed toward the development of artificial organs that can determine the degree of toxicity induced by specific drug concentrations and combinations before actual drug administration. However, it should be noted that the glomerulus is responsible not only for regulating endothelial cells but for selectively releasing proteins. This function requires interactions of podocytes and GBM proteins and is executed at a microscopic scale, making its emulation difficult.

The team successfully fabricated a glomerular microvessel-on-a-chip that recapitulates the intricate arrangement of the glomerular endothelial cells, podocyte layers, and GBM in a single step. This perfusable chip permits the co-culture of monolayer glomerular endothelium and podocyte epithelium, which demonstrate mature functional markers of glomerular cells. Moreover, the proper interactions between these cells lead to the production of GBM proteins, the key components of the GBM in vivo. Additionally, the team assessed the selective permeability capacity, a hallmark function of the glomerular filtration barrier in this novel glomerular model as well as evaluated the response of this model to Adriamycin- and hyperglycemia-induced injury.

We have successfully replicated glomerular units of the kidney, which offer boundless potential for drug screening and nephrotoxicity testing in clinical practice. This development will enable us to detect drug toxicity early by facilitating glomerulus disease modeling and to provide personalized treatment for patients."

Professor Dong-Woo Cho, Study Lead

The study was supported by the Korean Fund for Regenerative Medicine funded by Ministry of Science and ICT of Korea and by the Alchemist Project.

Journal reference:

Singh, N. K., et al. (2023). Coaxial cell printing of a human glomerular model: an in vitro glomerular filtration barrier and its pathophysiology. Biofabrication.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Live biotherapeutic product can improve clinical outcomes for patients with kidney cancer