CPRIT awards $2 million to SMU to recruit cancer biology researcher Annika Wylie

The Cancer Prevention and Research Institute of Texas (CPRIT) has awarded $2 million to recruit Annika Wylie to SMU and fund five years of her research, which focuses on the p53 gene, a naturally occurring tumor suppressor.

CPRIT is the state agency mandated to create and expedite innovation in the area of cancer research and enhance the potential for a medical or scientific breakthrough in both prevention and cures. CPRIT is now a $6 billion, 20-year initiative – the largest state cancer research investment in the history of the United States and the second largest cancer research and prevention program in the world.

I am very grateful to CPRIT and all of Texas for making this grant possible. CPRIT sets Texas apart in terms of recruiting and retaining cancer biology research and gives a tremendous boost in establishing my lab, hiring fantastic people, and forging ahead with answering challenging questions about p53 and how it could impact cancer care."

Annika Wylie, SMU

Wylie joins the Department of Biological Sciences in SMU's Dedman College of Humanities and Sciences as an assistant professor. Before coming to SMU, she was a postdoctoral researcher at UT Southwestern Medical Center, where she trained under her mentor, John Abrams, professor of cell biology.

Over the past several decades, scientists have determined that the p53 gene oversees the health of a cell's DNA by activating various downstream genes in response to stress. These genes cause a reaction that results in cell proliferation or prompts the cell to undergo programmed self-destruction, known as apoptosis. By doing this, p53 acts as a safeguard, preventing the spread of cells with flawed DNA, which could lead to cancerous tumors.

The p53 gene is present across various stages of evolutionary history, suggesting that a significant clue to how humans might combat cancer has been with us all along.

Wylie and her team are exploring other functions of p53, including its ability to deactivate downstream genes. They focus mainly on genes involved in the cell division process known as meiosis, and on transposons or "jumping genes." When p53 cannot prevent transposons from bouncing around our DNA, "jumping genes" get out of hand by making extra copies of themselves, which could be associated with cancer development.

"The ability of p53 to deactivate certain genes has been unappreciated and merits further study," explained Wylie. "Our research shows there's value in both p53's activate and inactivate functions. Further investigation into these mechanisms could lead to significant genetic interventions that halt cancer progression."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New collaborative effort aims to cure ALK-positive lung cancer