New "clickable" pseudoviruses could revolutionize virus research

NewsGuard 100/100 Score

Pseudoviruses resemble impostors: although harmless, they are designed in such a way that they can hardly be distinguished from their dangerous relatives. This makes them an invaluable tool in virus research. They can be used to precisely analyze infection pathways of dangerous virus variants.

A major challenge in this research area so far has been to make the pseudoviruses reliably visible under the microscope. This is because conventional labeling methods impair the activity of the "impostors" and thus falsify the imaging.

A team from the Rudolf Virchow Center - Center for Integrative and Translational Bioimaging at Julius-Maximilians-Universität (JMU) Würzburg, led by Professor Markus Sauer and Dr. Gerti Beliu, has now developed a solution: By combining genetic code expansion and click chemistry, a unique recognition feature for pseudoviruses was created that leaves their activity unaffected. These findings have been now published in the journal ACS Nano.

New horizons open up in virus research

The novel "clickable" pseudoviruses are highly fluorescent. However, in terms of binding and penetration into cells, they have the same properties as their pathogenic relatives. Once inside the cells, however, they do not cause disease - this allows them to be handled under reduced biological risk levels in S1/2 standard laboratories.

Markus Sauer is enthusiastic: "This method opens up completely new horizons for us in virus research. It's a leap forward in our ability to observe the complex dynamics of viral infections in living organisms using high-resolution microscopy methods."

Innovation meets precision

Another advantage of the new method is its high detection efficiency. Compared to conventional immunostaining methods, the JMU team found a detection efficiency many times higher. This makes finer details and subtle processes of the infection process visible.

The clickable pseudoviruses have the potential to revolutionize the way we study virus-cell interactions. It is as if we are using our microscopes to dive into a previously invisible world."

Dr. Gerti Beliu

Source:
Journal reference:

Jungblut, M., et al. (2023). Re-Engineered Pseudoviruses for Precise and Robust 3D Mapping of Viral Infection. ACS Nano. doi.org/10.1021/acsnano.3c07767.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research pinpoints key pathways in prostate cancer's vulnerability to ferroptosis