Liquid biopsy may offer new tools for personalized immunotherapy in lung cancer

Using a "liquid biopsy" to study genetic material from tumors shed into the bloodstream together with immune cells could help clinicians predict which patients with advanced lung cancers are responding to immunotherapies and which patients may develop immune-related side effects several months later, according to research directed by investigators at the Johns Hopkins Kimmel Cancer Center, the Bloomberg~Kimmel Institute for Cancer Immunotherapy and Allegheny Health Network Cancer Institute in Pittsburgh.

By monitoring changes in circulating tumor DNA (ctDNA) among 30 patients treated with immunotherapies for metastatic non-small cell lung cancers, the researchers were able to determine molecular response -; the clearance of tumor genetic material in the bloodstream -; which was significantly associated with progression-free and overall survival. Serial blood testing was also able to detect an expansion of T cells -; immune cells that typically recognize and target foreign or non-self molecules on tumor cells -; in patients with immune-related adverse events such as lung tissue inflammation as early as five months ahead of the emergence of clinical symptoms. Similar results were seen in an independent cohort of 49 patients with advanced lung cancers enrolled at the Allegheny Health Network Cancer Institute.

These results were published in the journal Clinical Cancer Research on Nov. 8, 2023.

Immunotherapy has revolutionized how we take care of patients with lung cancer, but it's been challenging to determine how to assess response. We don't have reliable biomarkers, so we rely a lot on imaging and patient symptoms to see how patients are clinically responding. Now, we can potentially use noninvasive tests like this to study response and predict side effects very early on, and change therapy regimens if necessary."

Joseph Murray, M.D., Ph.D., lead study author, assistant professor of oncology and co-director of the Lung Cancer Precision Medicine Center of Excellence at Johns Hopkins

The test also was able to help understand the clinical outcomes of patients with stable disease on imaging, says senior study author Valsamo "Elsa" Anagnostou, M.D., Ph.D., associate progressor of oncology, director of the thoracic oncology biorepository at Johns Hopkins, leader of Precision Oncology Analytics, co-leader of the Johns Hopkins Molecular Tumor Board and co-director of the Lung Cancer Precision Medicine Center of Excellence at Johns Hopkins.

"All of the patients who appeared to have stable disease on imaging tests had very different DNA molecular response patterns that helped predict their overall clinical outcomes," Anagnostou says. "This is a particular subset of patients for whom we may want to intervene, and use liquid biopsies to guide therapeutic decision-making, as ctDNA can rapidly and accurately capture the amount of cancer present." This work ties in the ongoing efforts of the thoracic oncology group at Johns Hopkins to implement liquid biopsies in clinical decision-making, through a ctDNA-adaptive clinical trial of chemo-immunotherapy for patients with metastatic lung cancer (NCT04093167).

Source:
Journal reference:

Murray, J. C., et al. (2023). Elucidating the heterogeneity of immunotherapy response and immune-related toxicities by longitudinal ctDNA and immune cell compartment tracking in lung cancer. Clinical Cancer Research. doi.org/10.1158/1078-0432.ccr-23-1469.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI-based liquid biopsy technology promises early detection of cancer recurrence