Open-source platform enables high-definition spatial transcriptomics

An open-source platform developed by researchers in Nikolaus Rajewsky's lab at the Max Delbrück Center creates molecular maps from patient tissue samples with subcellular precision, enabling detailed study and potentially enhancing routine clinical pathology. The study was published in "Cell."

Researchers in the Systems Biology Lab of Professor Nikolaus Rajewsky have developed a spatial transcriptomics platform, called Open-ST, that enables scientists to reconstruct gene expression in cells within a tissue in three dimensions. The platform produces these maps with such high resolution, that researchers are able to see molecular and (sub)cellular structures that are often lost in traditional 2D representations. The paper was published in the journal "Cell." 

In tissues from the brains of mice, Open-ST was able to reconstruct cell types at subcellular resolution. In tumor tissue and a healthy and metastatic lymph node from a patient with head and neck cancer, the platform captured the diversity of immune, stromal, and tumor cell populations. It also showed that these cell populations were organized around communication hotspots within the primary tumor, but this organization was disrupted in the metastasis. 

Such insights can help researchers understand how cancer cells interact with their surroundings and, potentially begin exploring how they evade the immune system. Data can also be used to predict potential drug targets for individual patients. The platform is not restricted to cancer and can be used to study any type of tissue and organism.

"We think these types of technologies will help researchers discover drug targets and new therapies," says Dr. Nikos Karaiskos, a senior scientist in the Rajewsky lab at the Berlin Institute for Medical Systems Biology of the Max Delbrück Center (MDC-BIMSB) and a corresponding author on the paper. 

Unveiling the spatial complexity of tissues 

Transcriptomics is the study of gene expression in a cell or a population of cells, but it usually does not include spatial information. Spatial transcriptomics, however, measures RNA expression in space, within a given tissue sample. Open-ST offers a cost-effective, high-resolution, easy-to-use method that captures both tissue morphology and spatial transcriptomics of a tissue section. Serial 2D maps can be aligned, reconstructing the tissue as 3D "virtual tissue blocks."

"Understanding the spatial relationships among cells in diseased tissues is crucial for deciphering the complex interactions that drive disease progression," says Rajewsky, who is also Director of MDC-BIMSB. "Open-ST data allow to systematically screen cell-cell interactions to discover mechanisms of health and disease and potential ways to reprogram tissues."

Open-ST images from cancer tissues also highlighted potential biomarkers at the 3D tumor/lymph node boundary that might serve as new drug targets. "These structures were not visible in 2D analyses and could only be seen in such an unbiased reconstruction of the tissue in 3D," says Daniel León-Periñán, co-first author on the paper. 

We have achieved a completely different level of precision. One can virtually navigate to any location in the 3D reconstruction to identify molecular mechanisms in individual cells, or the boundary between healthy and cancerous cells, for example, which is crucial for understanding how to target disease."

Nikolaus Rajewsky, Max Delbrück Center

Cost-effective and accessible technology

One significant advantage of Open-ST is cost. Commercially available spatial transcriptomics tools can be prohibitively expensive. Open-ST, however, uses only standard lab equipment and captures RNA efficiently, reducing costs significantly. Lower costs also mean that researchers can scale up their studies to include large sample sizes, to study patient cohorts, for example.

The researchers have made the entire experimental and computational workflow freely available to enable widespread use. Importantly, the platform is modular, says León-Periñán, so Open-ST can be adapted to suit specific needs. "All the tools are flexible enough that anything can be tweaked or changed." 

"A key goal was to create a method that is not only powerful but also accessible," says Marie Schott, a technician in the Rajewsky lab and co-first author on the paper. "By reducing the cost and complexity, we hope to democratize the technology and accelerate discovery."

Source:
Journal reference:

Schott, M., et al. (2024) Open-ST: High-resolution spatial transcriptomics in 3D. Celldoi.org/10.1016/j.cell.2024.05.055.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Accelerate Your Research: Dispen3D Harnesses the Power of 3D Models