AI predicts cell responses to drugs and genetic changes

Controlling the state of a cell in a desired direction is one of the central challenges in life sciences, including drug development, cancer treatment, and regenerative medicine. However, identifying the right drug or genetic target for that purpose is extremely difficult. To address this, researchers at KAIST have mathematically modeled the interaction between cells and drugs in a modular "Lego block" manner—breaking them down and recombining them—to develop a new AI technology that can predict not only new cell-drug reactions never before tested but also the effects of arbitrary genetic perturbations.

KAIST (President Kwang Hyung Lee) announced on the 16th of October that a research team led by Professor Kwang-Hyun Cho of the Department of Bio and Brain Engineering has developed a generative AI-based technology capable of identifying drugs and genetic targets that can guide cells toward a desired state.

"Latent space" is an invisible mathematical map used by image-generating AI to organize the essential features of objects or cells. The research team succeeded in separating the representations of cell states and drug effects within this space and then recombining them to predict the reactions of previously untested cell-drug combinations. They further extended this principle to show that the model can also predict how a cell's state would change when a specific gene is regulated.

The team validated this approach using real experimental data. As a result, the AI identified molecular targets capable of reverting colorectal cancer cells toward a normal-like state, which the team later confirmed through cell experiments.

This finding demonstrates that the method is not limited to cancer treatment—it serves as a general platform capable of predicting various untrained cell-state transitions and drug responses. In other words, the technology not only determines whether or not a drug works but also reveals how it functions inside the cell, making the achievement particularly meaningful.

The research provides a powerful tool for designing methods to induce desired cell-state changes. It is expected to have broad applications in drug discovery, cancer therapy, and regenerative medicine, such as restoring damaged cells to a healthy state.

Professor Kwang-Hyun Cho stated, "Inspired by image-generation AI, we applied the concept of a 'direction vector,' an idea that allows us to transform cells in a desired direction." He added, "This technology enables quantitative analysis of how specific drugs or genes affect cells and even predicts previously unknown reactions, making it a highly generalizable AI framework."

The study was conducted with Dr. Younghyun Han, Ph.D. candidate Hyunjin Kim, and Dr. Chun-Kyung Lee of KAIST. The research findings were published online in Cell Systems, a journal by Cell Press, on October 15.

The study was supported by the National Research Foundation of Korea (NRF) through the Ministry of Science and ICT's Mid-Career Researcher Program and the Basic Research Laboratory (BRL) Program.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
BD and Opentrons collaborate to accelerate single-cell multiomics discoveries with robotic automation