Cell therapy slows progression of metachromatic leukodystrophy

NewsGuard 100/100 Score

In an important discovery, scientists have demonstrated that the progression of a type of genetic brain disease is slowed and symptoms are improved in mice that received cell transplants.

The new study, published in the March 22 issue of The Journal of Neuroscience, may have implications for developing new therapies for metachromatic leukodystrophy, or MLD, a fatal, relatively rare inherited disorder that in humans usually begins early in life. In the disease, the fatty substance sulfatide accumulates in the brain due to the lack of an enzyme and causes loss of the white matter or myelin protecting nerve fibers. Without myelin, nerves cannot conduct impulses to and from other areas of the body, resulting in symptoms including convulsions, seizures, personality changes, spasticity, progressive dementia, motor disturbances progressing to paralysis, and blindness. There is no cure; the only current treatment is a bone marrow transplant.

Ernesto Bongarzone, PhD, and his colleagues at the San Raffaele Scientific Institute in Milan, Italy, transplanted cells that produce myelin into the brains of newborn MLD mice. The researchers found that the transplanted myelin-producing cells survived in the mice brains and successfully moved to regions of the brain where they could aid in producing myelin. The transplanted cells also helped lead to production of healthy myelin and improved motor coordination.

"There is much excitement in the field of cell-based therapy and this study is a clear indication of its potential," says Mahendra Rao, MD, PhD, at Johns Hopkins School of Medicine and the Invitrogen Corporation. "This carefully conducted study suggests that a different cell type, such as myelin-producing cells, may be better than others when used for therapy."

"These results contribute to a growing field of intense research where the use of brain-derived cells, including myelin-producing cells and neural stem cells, may be envisioned as direct cell therapies to target specific neurological diseases," says Bongarzone.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Discovery of new vascular cell type may pave way for novel strategies to treat cardiovascular diseases