Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles

NewsGuard 100/100 Score

Researchers at Montana State University have used an engineered form of ferritin, a cage-like iron storage protein, to both synthesize and deliver iron oxide nanoparticles to tumors.

The investigators, led by Trevor Douglas, Ph.D., and Mark Young, Ph.D., reported their findings in the Journal of the American Chemical Society.

Normally, human ferritin comprises two subunits that together create a protein that can store iron and ferry it throughout the body. For this work, however, the researchers used a genetically engineered form of the protein that contains only one subunit and that also contains a short peptide that binds to the blood vessels that surround cells. This engineered ferritin protein self-assembles into a cage-like structure that catalyzes the conversion of soluble iron into nanoscale iron oxide particles. Those iron oxide nanoparticles, containing between 3,000 and 5,000 iron atoms among them, grow within each protein cage, creating a tumor-targeted protein nanostructure that can act as a magnetic resonance imaging (MRI) contrast agent.

Experiments with tumor cells growing in culture demonstrated that these engineered nanostructures were capable of binding to tumor cells expressing a protein known as ævß3. The researchers note that the use of other cage-like proteins, instead of ferritin, could provide a wide range of tools for targeting tumors and delivering imaging agents and drugs to malignant cells. They believe that their method for producing these proteins in a form engineered to display tumor-targeting peptides should also prove to be a generally useful technique.

This work is detailed in a paper titled, “Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles.” An abstract of this paper is available through PubMed. View abstract.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
MONET: New AI tool enhances medical imaging with deep learning and text analysis