Scientists decode genome of Streptococcus sanguinis

NewsGuard 100/100 Score

Virginia Commonwealth University researchers have decoded the genome of a bacteria normally present in the healthy human mouth that can cause a deadly heart infection if it enters the bloodstream.

The finding enables scientists to better understand the organism, Streptococcus sanguinis, and develop new strategies for treatment and infection prevention.

S. sanguinis, a type of bacteria that is naturally present in the mouth, is among a variety of microorganisms responsible for the formation of dental plaque. In general, S. sanguinis is harmless. However, if it enters the bloodstream, possibly through a minor cut or wound in the mouth, it can cause bacterial endocarditis, a serious and often lethal infection of the heart.

Individuals with preexisting heart problems are at an increased risk of developing bacterial endocarditis. The infection may result in impaired heart function and complications such as heart attack and stroke. Typically, before dental surgery, such patients are given high dose antibiotics to prevent infection.

Decoding S. sanguinis, a streptococcal bacteria, will provide researchers with unique insight into its complex life cycle, metabolism and its ability to invade the host and cause bacterial endocarditis.

"We can apply this information toward the design of new treatments and preventative strategies to protect against this disease," said lead investigator, Francis Macrina, Ph.D., VCU?s vice president for research. "Analysis of the genome revealed a surprising number of proteins on the S. sanguinis cell surface that may be new targets for drugs or vaccines. We are already at work pursuing some of these leads."

Although it is not directly associated with tooth decay or gum disease, S. sanguinis is a prominent member of dental plaque. "Genomic studies of this organism will also help us better understand the formation of dental plaque and the initiation of oral diseases," added Macrina.

The team reported that the genome of the gram-positive bacterium is a circular DNA molecule consisting of approximately 2.4 million base pairs. They analyzed the S. sanguinis genome and found that it was larger than other streptococci that have been sequenced. Some of this extra DNA was apparently adopted from another bacterium and encodes genes that may give S. sanguinis the ability to survive better in the face of good oral hygiene. If so, this could explain the recent emergence of S. sanguinis as an important pathogen.

"The sequence of the S. sanguinis genome gives us a comprehensive view of the biological potential of this important pathogen," said Gregory A. Buck, Ph.D., director of the Center for the Study of Biological Complexity at VCU, who directed the sequencing and analysis. "This data opens a window into the inner workings of this bacterium. We now may be able to determine how and why these organisms cause disease."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Placental DNA methylation patterns altered by pregnancy air pollution exposure, research reveals