Genetic marker for insecticide resistance in mosquitoes identified

NewsGuard 100/100 Score

Research led by the Liverpool School of Tropical Medicine has identified the genetic basis for resistance to commonly-used insecticides in one of the major malaria-carrying mosquitoes in Africa.

Malaria remains one of the biggest killers of children and pregnant women in the developing world. Much of the effort to combat malaria is focused on controlling the mosquitoes which transmit the disease through the use of insecticides in bednets and indoor spraying.

Mosquitoes can evolve to overcome the way in which insecticides work and the emergence of insecticide-resistant strains of mosquitoes is an increasing problem, therefore understanding more about its genetic and biological basis is critical.

The group, led by Dr Charles Wondji at LSTM, studied strains of the Anopheles funestus mosquito and identified a family of genes coding for enzymes known as cytochrome P450s, detecting two genes which were associated with resistance to pyrethroid insecticide. Dr Hilary Ranson of the Liverpool School of Tropical Medicine, an author of the study, explained that these same genes were also recently identified with pyrethroid resistance in the other major malaria-carrying mosquito in Africa, Anopheles gambiae:

"We expected to find that different species and populations would have different groups of genes responsible but they are very similar. This is encouraging news because it means that work to overcome resistance in one species is likely to be effective against the other."

Furthermore, provided these genetic markers identified in laboratory populations of mosquitoes are equally predictive in the field – something currently being tested by Dr Wondji – this will overcome a major blocking point in the evaluation of wild mosquito populations. Dr Ranson explained: "Routine use of these molecular markers for resistance will provide early warning of future control problems due to insecticide resistance and should greatly enhance our ability to mitigate the potentially devastating effects of resistance on malaria control."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Garvan Institute and Illumina collaborate to transform the treatment of complex diseases