Fish oil protects against neurodegenerative diseases

NewsGuard 100/100 Score

Dr. Nicolas Bazan, Director of the Neuroscience Center of Excellence, Boyd Professor, and Ernest C. and Yvette C. Villere Chair of Retinal Degenerative Diseases Research at LSU Health Sciences Center New Orleans, will present new research findings showing that an omega three fatty acid in the diet protects brain cells by preventing the misfolding of a protein resulting from a gene mutation in neurodegenerative diseases like Parkinson's and Huntington's.

He will present these findings for the first time on Sunday, April 19, 2009 at 10:30 a.m. at the Ernest N. Morial Convention Center, Nouvelle C Room, at the American Society for Nutrition, Experimental Biology 2009 Annual Meeting.

With funding from the National Eye Institute of the National Institutes of Health, Dr. Bazan and his colleagues developed a cell model with a mutation of the Ataxin-1 gene. The defective Ataxin-1 gene induces the misfolding of the protein produced by the gene. These misshapened proteins cannot be properly processed by the cell machinery, resulting in tangled clumps of toxic protein that eventually kill the cell. Spinocerebellar Ataxia, a disabling disorder that affects speech, eye movement, and hand coordination at early ages of life, is one disorder resulting from the Ataxin-1 misfolding defect. The research team led by Dr. Bazan found that the omega three fatty acid, docosahexaenoic acid (DHA), protects cells from this defect.

Dr. Bazan's laboratory discovered earlier that neuroprotectin D1 (NPD1), a naturally-occurring molecule in the human brain that is derived from DHA also promotes brain cell survival. In this system NPD1 is capable of rescue the dying cells with the pathological type of Ataxin-1, keeping their integrity intact.

"These experiments provide proof of principle that neuroprotectin D1 can be applied therapeutically to combat various neurodegenerative diseases," says Dr. Bazan. "Furthermore, this study provides the basis of new therapeutic approaches to manipulate retinal pigment epithelial cells to be used as a source of NPD1 to treat patients with disorders characterized by this mutation like Parkinson's, Retinitis Pigmentosa and some forms of Alzheimer's Disease."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research highlights health risks posed by 2,6-DHNPs in drinking water