Hyper-SAGE with MRI sensitivity, a promising tool for in vivo diagnostics and molecular imaging

NewsGuard 100/100 Score

Detection of ultra-low concentrations of cancers and other clinical targets

A new technique in Magnetic Resonance Imaging dubbed "Hyper-SAGE" has the potential to detect ultra low concentrations of clincal targets, such as lung and other cancers. Development of Hyper-SAGE was led by one of the world's foremost authorities on MRI technology, Alexander Pines, a chemist who holds joint appointments with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley. The key to this technique is xenon gas that has been zapped with laser light to "hyperpolarize" the spins of its atomic nuclei so that most are pointing in the same direction.

"By detecting the MRI signal of dissolved hyperpolarized xenon after the xenon has been extracted back into the gas phase, we can boost the signal's strength up to 10,000 times," Pines says. "It is absolutely amazing because we're looking at pure gas and can reconstruct the whole image of our target. With this degree of sensitivity, Hyper-SAGE becomes a highly promising tool for in vivo diagnostics and molecular imaging."

MRI is a painless and radiation-free means of obtaining high quality three-dimensional tomographical images of internal tissue and organs. It is especially valuable for optically opaque samples, such as blood. However, the application of MRI to biomedical samples has been limited by sensitivity issues. For the past three decades, Pines has led an on-going effort to find ways of enhancing the sensitivity of MRI and its sister technology, nuclear magnetic resonance (NMR) spectroscopy. Hyper-SAGE, the latest development, represents a significant new advance for both technologies, according to Xin Zhou, a member of Pines' research group.

"Hyper-SAGE is a totally novel way to amplify a solvated xenon MRI/NMR signal in that instead of a chemical process, which is what previous signal enhancement techniques relied upon, it is a physical process," says Zhou. "Because gas can be physically compressed, the density of information-carrying polarized gas in our detection chamber can be much greater than the density of an information-carrying solution. This means we can detect MRI signals from concentrations of molecules many thousands of times smaller than can be detected with conventional MRI."

Zhou is the first author on a paper that is now available online in the Proceedings of the National Academy of Sciences (PNAS). The paper is entitled: "Hyperpolarized Xenon NMR and MRI Signal Amplification by Gas Extraction." Co-authoring the paper with Zhou and Pines was Dominic Graziani. All hold joint appointments with Berkeley Lab's Materials Sciences Division and UC Berkeley's Chemistry Department, where Pines serves as the Glenn T. Seaborg Professor of Chemistry.

So Powerful and Yet so Weak

The great contradiction about MRI/NMR spectroscopy is that for being two of the most powerful tools we have today for studying the chemical composition and structure of a sample, they are based on a stunningly weak signal. Both depend upon atomic nuclei that have an unpaired proton or neutron. Such nuclei spin on an axis like miniature tops, giving rise to a magnetic moment - meaning the nuclei act like magnets with a north and south pole. When exposed to an external magnetic field, these spinning "bar magnets" attempt to align their axes along the lines of magnetic force. Since the alignment is not exact, the result is a wobbling rotation, or "precession," that's unique to each type of atom.

If, while exposed to the magnetic field, the precessing nuclei are also hit with a radiofrequency pulse, they will absorb and re-emit energy at specific frequencies according to their rate of precession (NMR). When the rf pulse is combined with magnetic field gradients a spatially encoded signal is produced that can be detected and translated into three-dimensional images (MRI).

Obtaining an MRI signal from a sample depends upon the spins of its precessing nuclei being polarized so that an excess point either "up" or "down." MRI's inherent weakness stems from the fact that the natural excess of up versus down spins for any typical population of atomic nuclei in a sample is only about one in 100,000. For this reason, conventional MRI techniques are designed to detect nuclei that are highly abundant in tissue, usually the protons in water. In addition, clinicians use contrasting agents to induce detectable changes in the MRI signal from a sample that can reveal the presence of anomalies. However, the sensitivity is usually too low for molecular imaging, which is needed in cancer detection, for example, where the earliest detections generally produce the most favorable outcomes.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
A high-protein diet and elevation in the amino acid leucine may contribute to buildup of plaque in arteries