Blood clot-busting enzymes much busier than previously imagined

NewsGuard 100/100 Score

The body's blood clot-busting enzymes are much busier than previously imagined, with new research showing that they also dispose of every cell that dies prematurely from disease or trauma.

In research published today in Cell Reports, scientists from Monash University have demonstrated for the first time the enzyme t-PA, which plays a vital role in the removal of blood clots, is also a major player in the removal of necrotic, or dead, cells.

Necrosis occurs when cells in living tissue die prematurely due to external stress or injury. The body's system for removing waste associated with necrotic cell removal was not, until now, well understood.

Professor Robert Medcalf and Dr Andre Samson, of the University's Australian Centre for Blood Diseases (ACBD), led the research with Professor Stephen Bottomley of the Monash Department of Biochemisty and Molecular Biology.

The research team found that in the late stages of death, the injured cell undergoes a restructure and takes on a form not unlike a blood clot, to prepare for efficient removal from the body. This process had never been described before.

Professor Medcalf said the blood clot-like structure allowed the damaged cells to be recognised and removed by t-PA and its enzymatic waste disposal team.

"It's exactly the same principle as the formation and removal of a blood clot," Professor Medcalf said.

"In the process of a cell dying it goes through this unique form of aggregation to keep all the intracellular debris localised. Then, it can be taken out in an orderly fashion by the blood clot-busting enzyme system without causing damage to the body."

The researchers were studying brain tissue when they made the discovery, but have shown that the same process applies to every cell in the body.

"It's very efficient. Instead of doubling up, the body is using the same disposal system to eliminate a variety of unwanted waste products, be they dead cells or blood clots that have served their purpose," Professor Medcalf said.

"What this means is that t-PA and its team of enzymes recognises waste through structure or shape, not by the specific proteins involved."

The findings shed further light on the function and therapeutic uses of t-PA, which is used in the treatment of stroke and heart attack.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Spicing up diabetes management: Mediterranean diet's aromatic herbs lower blood sugar