Rehabilitation experts to develop prosthetic limb that moves and feels like natural one

NewsGuard 100/100 Score

Rehabilitation experts at the University of Pittsburgh School of Medicine hope to one day give people with an arm amputation a prosthetic limb that not only moves like a natural one, but "feels" like it, too. They expect such sensation will improve dexterous control of the device and give users greater intuition about what they are doing with their prosthetic.

With funding from the Defense Advanced Research Projects Agency (DARPA)'s Hand Proprioception and Touch Interfaces (HAPTIX) program, Robert Gaunt, Ph.D., assistant professor, Department of Physical Medicine and Rehabilitation (PM&R), Pitt School of Medicine and a multidisciplinary research team from Pitt, West Virginia University and Ripple LLC will begin developing the technology with the aim of being able to test it in patients' homes within four years.

"Advanced prosthetic limbs that behave like the hand and arm they are replacing have been an unrealized promise for many years largely because until recently, the technologies to really accomplish this goal simply haven't been available," Dr. Gaunt said. "To make the most of these new capabilities, we have to integrate the prosthetic into the remaining neural circuitry so the patient can use it like a regular hand that, for example, can pick up a pen, gently hold an egg or turn a stuck doorknob."

In the 18-month, first phase of the project, the team will recruit five volunteers to try to demonstrate that stimulation of the sensory portion of the spinal cord nerves, which would normally innervate the hand and forearm, can cause the amputee to feel distinct sensations of touch and joint movement in the "phantom" hand and wrist.

They also plan to insert fine-wire electrodes into the forearm muscles of able-bodied volunteers to collect and interpret muscle signals to guide movement of a virtual prosthetic hand to control hand opening and closing, as well as thumb movement. Eventually, the team aims to devise a fully implantable system for home use.

Michael Boninger, M.D., PM&R professor and chair, who will co-direct the project with Dr. Gaunt, called it a very exciting study.

"In my treatment of rehabilitation patients, the goal is always clear," Dr. Boninger said. "They want the medical team to make them like they were. The technology developed through HAPTIX will enable that dream."

The project will be conducted by a multidisciplinary team of engineers, scientists and clinicians from PM&R, plastic surgery, and neurological surgery in the School of Medicine, and occupational therapy, and rehabilitation science & technology in the School of Health and Rehabilitation Sciences at the University of Pittsburgh. Key aspects of the system will be designed by researchers at West Virginia University, and Ripple LLC, in Salt Lake City, Utah, will develop all the implantable system components.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study finds dysfunction of key brain systems in people with psychosis