Research confirms potential use of iron oxide nanoparticles in biomedical applications

NewsGuard 100/100 Score

Iron oxides are widespread in nature and can be readily synthesized in the laboratory. Among them, hematite, magnetite and maghemite nanoparticles have particularly promising properties for biomedical applications.

Schematic of magnetic nanoparticle based drug delivery system: drug-loaded IONPs are guided in vivo to the targeted tumour site using a high-gradient magnetic field. (Copyright: Science and Technology of Advanced Materials)

Researchers in China and Korea reviewed recent studies on the preparation, structure and magnetic properties of iron oxide nanoparticles (IONPs) and their corresponding applications. The review, published in the journal Science and Technology of Advanced Materials, emphasized that the size, size distribution (the relative proportions of different-sized particles in a given sample), shape and magnetic properties of IONPs affect the location and mobility of IONPs in the human body. However, having complete control over the shape and size distribution of magnetic IONPs remains a challenge.

For example, magnetic IONPs are promising for carrying cancer drugs that target specific tissues. For this to happen, they are coated with a biocompatible shell that carries a specific drug. If this "functionalized" magnetic IONP is too large, it may be cleared from the blood stream. Thus, it is very important to be able to control the size of these particles. Researchers found that IONPs with diameters ranging from 10 to 100 nanometres are optimal for intravenous injection and can remain in the blood stream for the longest period of time.

The surface charge of IONPs is also important for their stability and how they interact with tissues. For example, breast cells uptake positively charged IONPs better than negatively charged ones. At the same time, positively charged IONPs are more rapidly cleared from the circulation. Negatively charged and neutral IONPs tend to remain longer in the circulation. The surface charge of IONPs can be controlled by using an appropriately charged functionalized material as a shell.

Other applications that can benefit from improving the functionality of magnetic IONPs include magnetic resonance imaging, magnetic hyperthermia and thermoablation (killing selected cancer cells with heat), and biosensing (detecting molecular interactions for disease diagnosis).

Further research is needed to evaluate the toxicity of both bare and functionalized IONPs.

The team's next focus will be on fabricating recyclable magnetic IONP catalysts and designing multifunctional biomedical applications, involving magnetic IONPs, that can play a dual role in diagnosing and treating disease, says Professor Wei Wu from China's Wuhan University.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research pinpoints key pathways in prostate cancer's vulnerability to ferroptosis