Scientists develop rapid test that could revolutionize diagnostics of infectious diseases

NewsGuard 100/100 Score

Scientists of the Leibniz-Institute of Photonic Technologies (Leibniz-IPHT), Center for Sepsis Control and Care at the University Hospital Jena and Friedrich Schiller University work at a faster and cheaper alternative for hitherto time consuming pathogen diagnostics. Project manager Prof. Ute Neugebauer illustrates the advantages of this new approach: "We combine light-based analytical methods with microfluidic sample processing. With our Lab-on-a-Chip system, thus a miniaturized lab, we are able to clearly identify bacterial strains and their resistances, in less than three hours".

Standard practices for the infectious diagnostics require up to 72 hours to allow for a reliable result. This is due to the fact, that the number of pathogens in a patients sample is too small to conduct tests. Analysis is therefore only possible after time-consuming cultivation. Especially in clinical application during treatments of severe infections e.g. a sepsis time is a crucial factor. Intensive physicians are confronted with an alarming dilemma: "far too often we have to administer broad-spectrum antibiotics 'blindly', because we can neither analyze pathogen nor potential resistances. Therefore, we possibly use a sledge-hammer to crack a nut. A vicious cycle that aides the development of new resistances", explains Prof. Michael Bauer, director of the Clinic of Anesthesiology and Intensive Care at the University Hospital Jena.

The new method out of Jena provides much faster diagnosis as basis for a decision of a reliable therapy. Ute Neugebauer, who works at Leibniz-IPHT and the University Hospital Jena points to tiny electrodes that are fixed on the surface of a stamp-sized chip: "Electric fields secure bacteria in a very small area". Jena's scientists then apply various antibiotics in different concentrations on the trapped bacteria and examine them with Raman spectroscopy. "This means that we irradiate the pathogens with laser light and evaluate the scattered light spectrum", describes Neugebauer the method.

Prof. Jürgen Popp, director of the Leibniz-IPHT and head of the Institute of Physical Chemistry of the Friedrich-Schiller University Jena, explains: "After two hours we can already detect distinct changes in the Raman spectra. Out of these, we can derive whether the strain is resistant or sensible. At the same time we get information on the needed concentration of the antibiotic to constrain bacterial growth. This is an important diagnostic parameter that influences the success of a treatment decidedly", Popp continues. The results of the team of chemists, physicians, and biologists were published in the current edition of the renowned journal Analytical Chemistry, which was released in February 2018.

The combination of fast, light-based diagnostics and a high automation level reduces the time from sampling to result from to date 72 to three and a half hours. "Such a fast procedure could revolutionize diagnostics of infectious diseases", Prof. Bettina Löffler, director of the Institute of Medical Microbiology at the University Hospital Jena, is sure about that. Currently, researchers work at a platform for the application in hospitals. Another, more far reaching, aim is the further development into a cartridge-based rapid test system, which will enable general practitioners to identify resistances in a fast and easy way for the first time. Thereby, physicians would hold a powerful tool, from which they could benefit in personalized therapy, this means the administration of a fitting drug.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
UQ researchers use new dosing technology to enhance ICU antibiotic treatment