Researchers develop new guide for using mechanical stimulation to enhance tissue-engineered cartilage

NewsGuard 100/100 Score

Tissue-engineered articular cartilage (AC) for repairing cartilage damaged by trauma or disease can be made to more closely mimic natural AC if mechanical stimulation of particular magnitude and duration is applied during the development process. A detailed review of the different stimulation techniques used and how to determine optimal loading parameters for improving the mechanical, structural, and cellular properties of AC is published in Tissue Engineering, Part B (Reviews), a peer-reviewed journal fromMary Ann Liebert, Inc., publishers. The article is available free on the Tissue Engineeringwebsite until July 20, 2018.

In "A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties," coauthors Evelia Salinas, Jerry Hu, PhD, and Kyriacos Athanasiou, PhD, University of California, Irvine, provide a comprehensive overview of the significant progress that has been made in the optimization of loading parameters in AC constructs. The researchers have developed a guide to the qualitative and quantitative effects that can be achieved when various loading parameters are used in tissue-engineered AC, including direct compression, hydrostatic pressure, shear, and tensile loading.

"The translation of tissue-engineered products into clinical reality is a main goal for the field. Improvement of existing protocols and SOP development with focus on achieving full implant functionality, as well as validation and GLP/GMP conformity, are key aspects," says Tissue Engineering Part B Editor Katja Schenke-Layland, MSc, PhD, Eberhard Karls University, Tübingen. "This review is an important guide for derivation of functional in vitro-engineered articular cartilage."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Service dogs prove effective in identifying PTSD-related stress markers through human breath