Novel way to efficiently deliver anti-parasitic medicines

NewsGuard 100/100 Score

Scientists have developed a new way to deliver anti-parasitic medicines more efficiently.

An international team, led by Professor Francisco Goycoolea from the University of Leeds and Dr Claudio Salomon from the Universidad Nacional de Rosario, Argentina, and in collaboration with colleagues at the University of Münster, Germany, have developed a novel pharmaceutical formulation to administer triclabendazole - an anti-parasitic drug used to treat a type of flatworm infection - in billions of tiny capsules.

The World Health Organisation estimates that 2.4 million people are infected with fascioliasis, the disease caused by flatworms and treated with triclabendazole.

Anti-parasitic drugs do not become effective until they dissolve and are absorbed. Traditionally, these medicines are highly insoluble and this limits their therapeutic effect.

In a bid to overcome this limitation and accomplish the new formulation, the team used "soft" nanotechnology and nanomedicine approaches, which utilizes the self-assembly properties of organic nanostructures and uses techniques in which components, such as polymers and surfactants in solution, play key roles.

Their formulation produces capsules that are less than one micron in size - the diameter of a human hair is roughly 75 microns. These tiny capsules are loaded with triclabendazole and then bundled together to deliver the required dose.

The team used chitosan, a naturally-occurring sugar polymer found in the exoskeleton of shellfish and the cell walls of certain fungi, to coat the oil-core of capsules and bind the drug together, while stabilizing the capsule and helping to preserve it.

In its nanocapsule form, the drug would be 100 times more soluble than its current tablet form.

Professor Goycoolea, from the School of Food Science and Nutrition at Leeds, said: "Solubility is critical challenge for effective anti-parasite medicine. We looked to tackle this problem at the particle level. Triclabendazole taken as a dose made up of billions of tiny capsules would mean the medicine would be more efficiently and quickly absorbed

"Through the use of nanocapsules and nanoemulsions, drug efficiency can be enhanced and new solutions can be considered for the best ways to target medicine delivery."

Dr Salomon said: "To date, this is the first report on triclabendazole nanoencapsulation and we believe this type of formulation could be applied to other anti-parasitic drugs as well. But more research is needed to ensure this new pharmaceutical formulation of the drug does not diminish the anti-parasitic effect. Our ongoing research is working to answer this very question."

Although there have been cases of fascioliasis in more than 70 countries worldwide, with increasing reports from Europe and the Americas, it is considered a neglected disease, as it does not receive much attention and often goes untreated.

Symptoms of the disease when it reaches the chronic phase include intermittent pain, jaundice and anemia. Patients can also experience hardening of the liver in the case of long-term inflammation.

Because of the highly insoluble nature of anti-parasitic drugs, they need to be administered in very high dosages to ensure enough of the active ingredient is absorbed. This is particularly problematic when treating children for parasites. Tablets needs to be divided into smaller pieces to adjust the dosage and make swallowing easier, but this can cause side effects due to incorrect dosage.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nanotechnology could enhance traditional Chinese medicine delivery, promising improved clinical outcomes