Review investigates stem cell therapy as potential new treatment for preeclampsia

NewsGuard 100/100 Score

Preeclampsia is the leading cause of death and disability, for both mothers and babies, killing approximately 76,000 mothers and 500,000 babies globally every year. Despite this, the only cure at present is to deliver the placenta and the baby, with the potential for long term complications.

In recent years stem cell therapies have been investigated in animal models. A review article published in Current Hypertension Reports investigates mesenchymal stem/stromal cells (MSCs) as a potential new treatment for preeclampsia.

Senior author, Dr. Lana McClements, from the University of Technology Sydney (UTS) said that preeclampsia is a pregnancy complication which manifests as a sudden onset of high blood pressure and organ damage, often involving kidneys or liver, in the second half of pregnancy.

Most of the deaths associated with preeclampsia occur in developing or low-resource countries however preeclampsia rates in developing countries are increasing due to increase rates of obesity, diabetes and age of women getting pregnant. While there are fewer deaths caused by preeclampsia in developing countries, the economic burden on the healthcare systems is significant."

Dr. Lana McClements, University of Technology Sydney

"In addition, studies show that beyond life-threatening complications in pregnancy preeclampsia is associated with increased maternal and offspring ill health in later life which makes this review important. If stem cell therapies have potential to treat this condition in pregnancy then their application needs to be assessed for clinical trials," she says.

Dr McClements and her co-authors from the Mayo Clinic (USA); University of Belgrade (Serbia); University of Nis (Serbia), Queen's University Belfast (UK) and Serbian Academy of Sciences and Arts, reviewed the therapeutic potential and mechanisms of MSCs in the context of preeclampsia.

MSCs are the most widely used stem cells for treatment of many diseases including cardiovascular disease. More recently, a limited number of studies (five) have tested these stem cells, or their associated secreted cargo (vesicles) as novel treatment options for preeclampsia in pre-clinical (animal) models showing promising results.

The authors say that of particular interest to low-resourced countries are vesicles secreted from these stem cells due to their stability and avoiding the need for expensive GMP cell manufacturing facilities.

"Preeclampsia develops due to a complex set of conditions. Our review shows that there is potential to use stem cells as therapy but we still don't understand the mechanism by which MSCs might repair damage in the condition.

"Further work is needed to maximize their therapeutic potential and minimize possible side effects before they can be introduced in a clinical setting, this is why we are pursuing this important research in my laboratory at UTS to help treat such a devastating disease," Dr McClements says.

Source:
Journal reference:

Suvakov, S., et al. (2020) Emerging Therapeutic Potential of Mesenchymal Stem/Stromal Cells in Preeclampsia. Current Hypertension Reports. doi.org/10.1007/s11906-020-1034-8.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New technique allows scientists to study the fatty contents of cancer cells