Digital twin approach for cardiology opens up new possibilities in clinical diagnostics

NewsGuard 100/100 Score

Using mathematical image processing, scientists at the BioTechMed-Graz research cooperation have found a way to create digital twins from human hearts. The method opens up completely new possibilities in clinical diagnostics.

Although treatment options are constantly improving, cardiovascular diseases are still one of the most frequent causes of death in Europe. The success of the treatment varies from patient to patient and depends on the individual clinical picture, as Gernot Plank, researcher at the Institute of Biophysics at the Medical University of Graz explains using an example: "For example, pacemaker therapy is not successful in about 30 per cent of cardiac patients who have had a pacemaker implanted for mechanical resynchronization of the heartbeat."

In order to be able to rule out such interventions in advance, Plank has developed a computer model together with the mathematicians Gundolf Haase and Kristian Bredies from the University of Graz and computer scientist Thomas Pock from the Institute of Computer Vision and Representation at Graz University of Technology, respectively, with which doctors can pre-simulate the optimal therapy and dramatically improve the success of treatment.

Digital one-to-one models

The researchers use diagnostic data from MRI, ECG and other heart examinations of the person to be treated. Imaging algorithms put together a digital image of the patient's heart from this data material. This customized model ultimately provides a wealth of information that helps to understand the individual clinical picture and to run through various therapeutic scenarios.

Thomas Pock explains the challenge behind it: "To simulate such a heartbeat in the computer, you have to calculate millions of variables. This requires complex mathematical procedures, special algorithms and special hardware that can perform billions of computing actions per second."

Method is ready for use

The developed method is so sophisticated and automated that anatomically correct digital twins of patient hearts can already be routinely produced in a clinical setting. In a next step, the researchers want to further improve the technology and enable fully automatic adjustment of all functional aspects of the heartbeat.

This requires further efforts in basic research, especially in those areas of machine learning and artificial intelligence (AI) that allow a high degree of personalization."

Gernot Plank, Researcher, Institute of Biophysics, Medical University of Graz

Focus on further development

A very promising approach is based on the latest AI methods for optimal control and focuses on the wave propagation in the heart, which is controlled by the alignment of the heart muscle fibres. The consortium wants to implement this approach in cooperation with Cardiocentro Ticinio (center for computer-assisted cardiology, Lugano) in a new research project and try to incorporate the "control elements" into the model using machine learning techniques in such a way that the simulated heartbeat comes as close as possible to the real heartbeat.

The first clinical validation studies are in preparation for 2021 in cooperation with Daniel Scherr from the Division of Cardiology at the Medical University of Graz. Plank and Pock assume that clinically usable prototypes of a fully automated digital twin heart can be tested as early as 2022. The simulation technology on which the method is based is already being distributed by the Graz-based start-up NumeriCor and is used by leading medical technology companies in the R&D sector.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI-driven advancements in electronic skin technology promise revolution in health monitoring and diagnostics