Scientists develop new resources to combat cancer, advance cutting-edge genomics research

NewsGuard 100/100 Score

University of Virginia School of Medicine scientists have developed important new resources that will aid the battle against cancer and advance cutting-edge genomics research.

UVA's Chongzhi Zang, PhD, and his colleagues and students have developed a new computational method to map the folding patterns of our chromosomes in three dimensions from experimental data. This is important because the configuration of genetic material inside our chromosomes actually affects how our genes work.

In cancer, that configuration can go wrong, so scientists want to understand the genome architecture of both healthy cells and cancerous ones. This will help them develop better ways to treat and prevent cancer, in addition to advancing many other areas of medical research.

Using their new approaches, Zang and his colleagues and students have already unearthed a treasure trove of useful data, and they are making their techniques and findings available to their fellow scientists. To advance cancer research, they've even built an interactive website that brings together their findings with vast amounts of data from other resources. They say their new website, bartcancer.org, can provide "unique insights" for cancer researchers.

The folding pattern of the genome is highly dynamic; it changes frequently and differs from cell to cell. Our new method aims to link this dynamic pattern to the control of gene activities. A better understanding of this link can help unravel the genetic cause of cancer and other diseases and can guide future drug development for precision medicine."

Chongzhi  Zang, Computational Biologist with Center for Public Health Genomics and Cancer Center, University of Virginia Health System

Bet on BART

Zang's new approach to mapping the folding of our genome is called BART3D. Essentially, it compares available three-dimensional configuration data about one region of a chromosome with many of its neighbors. It can then extrapolate from this comparison to fill in blanks in the blueprints of genetic material using "Binding Analysis for Regulation of Transcription", or BART, a novel algorithm they recently developed.

The result is a map that offers unprecedented insights into how our genes interact with the "transcriptional regulators" that control their activity. Identifying these regulators helps scientists understand what turns particular genes on and off - information they can use in the battle against cancer and other diseases.

The researchers have built a web server, BARTweb, to offer the BART tool to their fellow scientists.  Test runs demonstrated that the server outperformed several existing tools for identifying the transcriptional regulators that control particular sets of genes, the researchers report.

The UVA team also built the BART Cancer database to advance research into 15 different types of cancer, including breast, lung, colorectal and prostate cancer. Scientists can search the interactive database to see which regulators are more active and which are less active in each cancer.

"While a cancer researcher can browse our database to screen potential drug targets, any biomedical scientist can use our web server to analyze their own genetic data," Zang said. "We hope that the tools and resources we develop can benefit the whole biomedical research community by accelerating scientific discoveries and future therapeutic development."

Source:
Journal reference:

Thomas, Z. V., et al. (2021) BART Cancer: a web resource for transcriptional regulators in cancer genomes. NAR Cancer. doi.org/10.1093/narcan/zcab011.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Machine learning models identify immunophenotypes in NSCLC for immunotherapy guidance