Combination of two drugs may help pancreatic and liver cancer patients

NewsGuard 100/100 Score

A drug candidate discovered and developed decades ago in the laboratory of UC Davis distinguished professor Bruce Hammock may help control the body's raging and often deadly inflammatory response to chemotherapy treatments, especially for pancreatic and liver cancer patients.

The research team, based in the laboratories of Dipak Panigrahy at Harvard Medical School and Hammock, announced the findings in Proceedings of the National Academy of Sciences (PNAS) this week.

Working in rodent models of liver and pancreatic cancer, they found that they could use a combination of two drugs to reduce inflammation following chemotherapy. Inflammation associated with debris from dying tumor cells can trigger metastasis, the spread of cancer throughout the body.

"We discovered that we can reduce or clear the chemotherapy-generated inflammation by inhibiting or blocking the enzyme, soluble epoxide hydrolase (sEH), and the EP4 prostaglandin receptor," said co-senior author Hammock, who holds a joint appointment with the UC Davis Department of Entomology and Nematology and Comprehensive Cancer Center.

Basically, when we blocked both the sEH and EP4 eicosanoid pathways, the compounds worked together, preventing pancreas and liver cancer metastasis by stimulating the clearance of debris from prior cancer treatment."

Dipak Panigrahy, Physician-Researcher with the Israel Deaconess Medical Center, Harvard School of Medicine

The EP4 antagonist INV-1120 is currently in a phase I clinical trial in the U.S., said coauthor Yongkui Sun, chairman of Ionova Life Science, a biotechnology company in China that translates basic biomedical research discoveries into novel therapeutics for cancer.

Controlling inflammation upstream

In the preclinical animal model, INV-1120 demonstrated synergy with anti-PD-1, the sEH inhibitor, in fighting cancers such as pancreatic and liver cancers, Sun said.

The sEH and EP4 proteins play an important role in promoting inflammation. Hammock discovered the sEH pathway decades ago while researching metamorphosis in butterflies. The sEH pathway turned out to be important in both pain and inflammation in humans. Hammock founded the UC Davis-based EicOsis Human Health LLC to bring the sEH inhibitor to human clinical trials, now underway in Texas.

"Controlling the body's inflammatory response to chemotherapy will likely be important to prevent metastasis," Hammock said. "It hit me that what we really need to do is not so much block cytokines as to move upstream to modulate them and resolve them rather just block inflammation."

Combining drugs to block the sEH and EP4 pathways is a novel approach to turning down the inflammation and preventing the cytokine storm caused by chemotherapy and even tumor resection, the authors said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
What is the association between post-diagnostic plant-based dietary patterns and the risk of prostate cancer progression?