Impact of environmental SARS-CoV-2 contamination in residential housing

NewsGuard 100/100 Score

A team of scientists from the United States has recently unveiled that environmental contamination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in households by surface sampling. Moreover, the findings reveal that certain bacterial communities in surface samples can be used as predictors of SARS-CoV-2 positive or negative status.

Study: SARS-CoV-2 Distribution in Residential Housing Suggests Contact Deposition and Correlates with Rothia sp. Image Credit: Luz Zuluaga Photography/ShutterstockStudy: SARS-CoV-2 Distribution in Residential Housing Suggests Contact Deposition and Correlates with Rothia sp. Image Credit: Luz Zuluaga Photography/Shutterstock

The study is currently available on the medRxiv* preprint server, whilst the article undergoes peer review

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

SARS-CoV-2, the causative pathogen of coronavirus disease 2019 (COVID-19), is an enveloped, positive-sense, single-stranded RNA virus that primarily spreads via respiratory droplets or aerosols. However, there is evidence claiming that viral transmission can occur via contaminated surfaces. During previous outbreaks of other beta-coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS), several studies have been conducted to detect the presence, persistence, and viability of the virus on surfaces and in air. The evaluation of environmental contamination is particularly helpful in understanding the persistence of viable viruses on high-touch surfaces in hospitals or isolation rooms that can actively participate in viral transmission.    

In the current study, the scientists have assessed the presence of SARS-CoV-2 on indoor surfaces to understand the possibility of direct (touching surfaces) or indirect (via droplets or aerosols) viral transmission.

Study design

For estimating viral loads on surfaces, the scientists collected a total of 381 samples from three housing units where SARS-CoV-2-infected individuals resided in isolation. They collected respiratory samples from each infected individual on the day of surface sampling. All surface samples were tested for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR).

Furthermore, the scientists investigated whether there is an association between SARS-CoV-2 positive or negative status and the presence of bacterial communities in tested samples.

Important observations

Of 381 tested samples, 178 were positive for SARS-CoV-2 (47%). The positivity rates were comparable in two housing units (53% and 61%); however, the third unit had a significantly lower positivity rate (24%). In all tested units, the viral detection rate was the highest in bedrooms. Similarly, the highest viral load was observed in high-touch surfaces (switches and handles), followed by floors and high-use objects (refrigerator, sink, toilet, and bed). In objects with plane surfaces and handles, such as refrigerators, cabinets, and drawers, the detectable viral load was observed only on touched handles, but not on plane surfaces.

The analysis of alpha diversity of bacteria in tested samples revealed a statistically significant association with SARS-CoV-2 positive/negative status. However, the findings indicated that the presence of a bacterial community is not sufficient to predict SARS-CoV-2 status in a single sample.

Further analysis of differentially abundant bacteria in tested samples revealed that Rothia dentocariosa is positively associated with SARS-CoV-2 status. Rothia dentocariosa is a Gram-positive bacterium belonging to the normal microbial community located in the mouth and respiratory tract. In addition, certain bacterial communities belonging to the genus Corynebacterium were identified as predictors of SARS-CoV-2 positive samples.  

Study significance

The study findings demonstrate the presence of SARS-CoV-2 and related bacterial communities on high-touch surfaces of households with SARS-CoV-2-infected individuals. The study highlights the significance of surface sampling as a sensitive and low-cost method for detecting environmental SARS-CoV-2 contamination in residential housing.

Importantly, the study has analyzed the changes in bacterial communities in SARS-CoV-2 infected individuals that can be detected in the indoor environment. In many surface samples obtained from various locations, Rothia dentocariosa has been identified as an independent predictor of SARS-CoV-2 positive status.

Although bacterial communities belonging to the genus Corynebacterium have been identified as predictors of SARS-CoV-2 status in surface samples, previous studies have shown that COVID-19 patients exhibit a significantly lower level of Corynebacterium in the oral microbiome. In the current study, the scientists hypothesize that the presence of Corynebacterium and SARS-CoV-2 in surface samples might be associated with skin contamination.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 9 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2023, May 09). Impact of environmental SARS-CoV-2 contamination in residential housing. News-Medical. Retrieved on April 25, 2024 from https://www.news-medical.net/news/20211210/Impact-of-environmental-SARS-CoV-2-contamination-in-residential-housing.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "Impact of environmental SARS-CoV-2 contamination in residential housing". News-Medical. 25 April 2024. <https://www.news-medical.net/news/20211210/Impact-of-environmental-SARS-CoV-2-contamination-in-residential-housing.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "Impact of environmental SARS-CoV-2 contamination in residential housing". News-Medical. https://www.news-medical.net/news/20211210/Impact-of-environmental-SARS-CoV-2-contamination-in-residential-housing.aspx. (accessed April 25, 2024).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2023. Impact of environmental SARS-CoV-2 contamination in residential housing. News-Medical, viewed 25 April 2024, https://www.news-medical.net/news/20211210/Impact-of-environmental-SARS-CoV-2-contamination-in-residential-housing.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study shows slight increase in Guillain-Barre syndrome risk with adenovirus COVID vaccines