Impact of delaying the lifting of SARS-CoV-2 lockdown restrictions

NewsGuard 100/100 Score

In a recent study posted to the medRxiv* pre-print server, researchers used statistical and mathematical models to explore the progressive transmissibilities of B.1.177, Alpha, and Delta variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) circulating in England between September 2020 and July 2021. They modeled the coronavirus disease 2019 (COVID-19) epidemic during this period to project the epidemic trajectories in the first half of 2021 in England.

Study: Statistical and agent-based modelling of the transmissibility of different SARS-CoV-2 variants in England and impact of different interventions. Image Credit: eldar nurkovic/ShutterstockStudy: Statistical and agent-based modelling of the transmissibility of different SARS-CoV-2 variants in England and impact of different interventions. Image Credit: eldar nurkovic/Shutterstock

Several past studies have used statistical or mathematical modeling to understand available SARS-CoV-2 data and forecast different pandemic scenarios, but these two have rarely been used in conjunction.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

About the study

In the present study, researchers used both these tools to simulate the spread of different SARS-CoV-2 variants in England between September 2020 and July 2021, evaluate their relative transmissibility, and model the impact of delaying Step 4 of the roadmap in the presence of the Delta variant and with continual vaccination.

Step 4 on the reopening roadmap, which would have fully relaxed the social distancing measures back to normal, was planned for June 21, 2021, in England. The Delta variant began spreading in England from the middle of April 2021, increasing the COVID-19 daily cases from 1,734 to 9,371 and daily hospitalizations from 114 to 242 ahead of the planned date for Step 4 reopening: between May 23, 2021, and June 17, 2021. Subsequently, the UK government was concerned over the safety of relaxing restrictions. This study, performed in June 2021, helped policymakers decide whether Step 4 on the roadmap should proceed as planned or postponed.

The researchers used statistical analysis of genomic surveillance data of SARS-CoV-2 and illustrated the application of the calibrated Covasim model across different COVID-19 epidemic scenarios to quantify the impact of the vaccination strategy and the Delta variant on planning cases, hospitalizations, and deaths due to COVID-19 alongside the four steps of the roadmap in England in the first half of 2021.

This study used the existing Covasim model at the median of 100 simulations. Covasim, a stochastic model, also introduced uncertainty in predicted outcomes; thus, researchers could project epidemic trajectories only four weeks into the future. 

Results

Both statistical and mathematical modeling results confirmed that emerging SARS-CoV-2 variants were progressively more transmissible. While the transmissibility of the B.1.177 strain was 20% more than the previously predominant variant, the transmissibility of the Alpha variant was 50-80% more than B.1.177 strain. The Delta variant was the most transmissible with 65-90% more transmissibility than the Alpha variant, so it replaced the Alpha variant in England in May 2021. 

Although the statistical estimations of relative advantage in the transmissibility of Alpha over B.1.177 and of Delta over Alpha was spatially heterogeneous, the results were consistent with the values determined by Covasim, and with previous estimates of the transmissibility of Alpha relative to previously circulating variants by Davies et al. and Volz et al. Similarly, the study results showing the transmissibility of the Delta variant vs. previous prevalent variants were close to the reported range of 69% to 83% by Sonabend et al. Overall, the study results were in agreement with other modeling results further confirming that Step 4 of the roadmap for relaxing restrictions should be delayed amid the emergence of the highly transmissible Delta variant.

While the third national lockdown in early 2021 in England successfully suppressed the spread of the Alpha variant, the study results projected a fatal third wave of COVID-19 infections following Step 4 of the roadmap in the absence of vaccination due to the uncontrolled spread of the Delta variant. The study analysis suggested a one-month delay of Step 4 of England’s COVID-19 roadmap out of lockdown was adequate to substantially reduce the resurgence in COVID-19 infections, hospitalizations, and deaths amid the emergence of a highly infectious Delta variant in late spring 2021. Also, the simulations of June 2021 showed that the delay drastically dampened the projected resurgence due to Delta, which was further suppressed due to the effect of the vaccination program that began in December 2020.

Conclusions

The study is among the pioneering works modeling the sequential competition of more than two SARS-CoV-2 variants over different periods and quantifying progressive transmissibility using statistical analysis and agent-based model, Covasim. Since the analysis used both statistical and mathematical modeling for estimations, this provided a robustness check within the same study besides generating results aligned with previous studies.

The study findings provided critical insights into competitive behavior and the relative transmissibility of SARS-CoV-2 variants, which could be used for planning responses to future emerging variants and exploring co-infections with different strains of SARS-CoV-2 and influenza virus.

This analysis illustrated the crucial role of appropriate timing of easing lockdown-induced restrictions and its impact in preventing large surges in COVID-19 infections in the English epidemic. Other countries could also benefit by taking cues from such lockdown exit strategies.

Most importantly, the study results, combined with findings of other modeling studies, were used to scientifically advise the UK Government to delay Step 4 reopening until July 19 to avert adverse outcomes due to the spread of the Delta variant.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 10 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, May 10). Impact of delaying the lifting of SARS-CoV-2 lockdown restrictions. News-Medical. Retrieved on May 10, 2024 from https://www.news-medical.net/news/20220105/Impact-of-delaying-the-lifting-of-SARS-CoV-2-lockdown-restrictions.aspx.

  • MLA

    Mathur, Neha. "Impact of delaying the lifting of SARS-CoV-2 lockdown restrictions". News-Medical. 10 May 2024. <https://www.news-medical.net/news/20220105/Impact-of-delaying-the-lifting-of-SARS-CoV-2-lockdown-restrictions.aspx>.

  • Chicago

    Mathur, Neha. "Impact of delaying the lifting of SARS-CoV-2 lockdown restrictions". News-Medical. https://www.news-medical.net/news/20220105/Impact-of-delaying-the-lifting-of-SARS-CoV-2-lockdown-restrictions.aspx. (accessed May 10, 2024).

  • Harvard

    Mathur, Neha. 2023. Impact of delaying the lifting of SARS-CoV-2 lockdown restrictions. News-Medical, viewed 10 May 2024, https://www.news-medical.net/news/20220105/Impact-of-delaying-the-lifting-of-SARS-CoV-2-lockdown-restrictions.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Global study reveals mismatch in COVID-19 treatment guidelines with WHO standards