ACR TI-RADS, deep learning algorithm offer alternative strategies for evaluating thyroid nodules

NewsGuard 100/100 Score

According to an accepted manuscript published in ARRS' American Journal of Roentgenology (AJR), ACR TI-RADS and a deep learning algorithm trained on adult populations offer alternative strategies for evaluating thyroid nodules in children and younger adults, including guiding decisions to perform fine-needle aspiration.

"Both ACR TI-RADS and the deep learning algorithm had higher sensitivity, albeit lower specificity, compared with radiologists' overall impressions," wrote co-first author Jichen Yang, BSE, from the department of electrical and computer engineering at Duke University in Durham, NC. Adding that the algorithm had similar sensitivity, but lower specificity, than ACR TI-RADS, "interobserver agreement was higher for ACR TI-RADS than for overall impressions," Yang noted.

In this AJR accepted manuscript, 139 patients (119 female, 20 male) aged ≤21 years with a thyroid nodule on ultrasound with definitive pathologic results from fine-needle aspiration and/or surgical excision were evaluated from January 1, 2004 to September 18, 2020. Single transverse and longitudinal images of one nodule per patient were then extracted. Three radiologists independently characterized nodules based on overall impression (benign vs. malignant) and ACR TI-RADS. A previously developed deep learning algorithm determined malignancy likelihood for each nodule, which was used to derive risk level.

The code repository for Yang and colleagues' deep learning algorithm is available here.

Ultimately, for evaluating thyroid nodules via ultrasound in children and young adults, radiologists' overall impressions-;representing the current standard clinical approach-;had mean sensitivity of 58.3% and mean specificity of 79.9%; ACR TI-RADS had mean sensitivity of 85.1% and mean specificity of 50.6%, and a deep learning algorithm had sensitivity of 87.5% and specificity of 36.1%.

"Given the heightened priority for sensitivity when evaluating thyroid nodules in children, compared with in adults, the findings support the continued exploration in children of ACR TI-RADS and of the deep learning algorithm," Yang et al. concluded in this AJR accepted manuscript.

Source:
Journal reference:

Yang, J., et al. (2022) Thyroid Nodules on Ultrasound in Children and Young Adults: Comparison of Diagnostic Performance of Radiologists' Impressions, ACR TI-RADS, and a Deep Learning Algorithm. American Journal of Roentgenology. doi.org/10.2214/AJR.22.28231.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Ultrasound technology shows promise in detecting thoracic surface vibrations