Enveloped viruses show greater cross-species transmission, according to new research

NewsGuard 100/100 Score

A study published in PNAS Microbiology found that enveloped viruses harbor greater cross-species transmissibility and are more likely to cause zoonotic infections than nonenveloped viruses. The research suggested that viral envelopes aid these pathogens in evading host immunity.

Study: Enveloped viruses show increased propensity to cross-species transmission and zoonosis. Image Credit: Kateryna Kon/Shutterstock
Study: Enveloped viruses show increased propensity to cross-species transmission and zoonosis. Image Credit: Kateryna Kon/Shutterstock


Zoonosis refers to the spread of infectious diseases between animals and humans (or between humans and animals). In the past few decades, the cross-species transmission of viruses from wild or domestic animals to humans (zoonoses) has led to major epidemics. Still, our understanding of this complex process remains limited.

Several well-known zoonoses include human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), Zika, Ebola, influenza, COVID, and mpox. Therefore, understanding and predicting virus emergence has become a scientific priority. Several zoonotic risk factors exist, including biodiversity elimination and species invasions, viral host variability, interaction frequency, life cycle characteristics of reservoir hosts, wildlife trade, and host closeness to humans.

Nevertheless, prior studies have revealed that three factors have been identified as contributing to the risk of zoonotic disease spread – viral genetic material – ribonucleic acid (RNA) viruses may be more susceptible than DNA viruses; replication site – viruses that replicate in the host cytoplasm rather than the nucleus may have an advantage; and genome size – smaller genomes may be more zoonotic.

The enveloped nature of viruses is a characteristic feature that distinguishes them from other organisms. Most zoonotic viruses that have caused human disease in the past were enveloped, such as – smallpox, mpox, coronaviruses, rabies, measles, and influenza.

A virus's genome can provide information regarding host tropism and zoonotic propensity by evaluating characteristics like codon or dinucleotide usage biases and the degree to which these biases reflect those observed in the host-gene transcripts. The fundamental features of viruses remain unknown despite these advancements in understanding cross-species transmission and zoonosis.

The study

Using a database of over 12,000 mammalian virus–host interactions, the current work explored key virological properties that influence cross-species transmissibility and zoonotic propensity to understand better which viral characteristics predominantly determine zoonosis.

Here, the researchers examined a large VIRION database containing 5,149 viruses identified through metagenomic studies. This exploratory analysis utilized the Global Virome in One Network (VIRION) database. Overall, 5,149 viruses belonging to 36 families and 1,599 host species were analyzed from 20 orders, revealing 12,888 virus-host associations. 

Following this, the fundamental characteristics of the viruses were defined based on –their genetic material; single or double-stranded; segmented or non-segmented, replicating in the cytoplasm or nucleus, enveloped or nonenveloped, and the genome size. 

For each virus, the number of natural host species was identified and recorded, excluding humans, to reduce the possibility of bias. The mammalian viruses were then examined for their potential pathogenicity, i.e., their ability for zoonosis.

The findings

The results showed that the number of host species increased more rapidly for enveloped viruses than for non-enveloped viruses, being approximately twice as high for the former type. This difference was also discernible when the envelope factor was combined with the other viral characteristics. 

All other viral characteristics examined were either not significant or marginally significant. Enveloped viruses were more likely to undergo cross-species transmission than nonenveloped viruses. 

It was noted that enveloped viruses tend to have a higher proportion of zoonotic spread than non-enveloped viruses. Using binary logistic regression with N ≥5 sequence records, zoonotic propensity was estimated to increase 2.5-fold for enveloped viruses compared to non-enveloped viruses. Thus, enveloped viruses showed a higher propensity for zoonotic spillover than non-enveloped viruses.

Meanwhile, viruses replicating in the cytoplasm were found to be more likely (1.9 times) to be zoonotic than those replicating in the nucleus. Segmented viruses heightened the chances for zoonosis slightly more than non-segmented viruses. Further, viruses with smaller genomes had a greater probability of precipitating zoonotic infection. 

The lack of significant effects of these two features on cross-species transmission meant that their impact on zoonotic propensity could either be due to human-specific factors or, more likely, to biases within the human-infectious virus datasets.

This study also provided insights into how enveloped viruses might infect hosts. It was likely that envelope proteins were structurally less constraining than capsid proteins, allowing enveloped viruses to bind cellular receptors from different host species with greater flexibility, bind to a larger number of alternative receptors, or accommodate host-switch mutations without compromising other functions. 

Another possible mechanism is an apoptotic mimicry, in which viral particles are engulfed by host cells disguised as apoptotic bodies with defined membrane lipid conformations and get introduced into the host cells. 


The results revealed that enveloped viruses infect more host species and are more likely to be zoonotic than non-enveloped viruses. In contrast, other viral characteristics, such as genome composition, structure, size, and the viral replication compartment, are less significant. 

According to this study, viral envelopes did not significantly impact or even reduce the zoonotic risk contrary to the prior belief, and this may help in prioritizing outbreak prevention efforts. A viral envelope may facilitate cross-species transmission by facilitating structural flexibility of the receptor-binding proteins and allowing for overcoming the viral entry barriers.

Journal reference:
Nidhi Saha

Written by

Nidhi Saha

I am a medical content writer and editor. My interests lie in public health awareness and medical communication. I have worked as a clinical dentist and as a consultant research writer in an Indian medical publishing house. It is my constant endeavor is to update knowledge on newer treatment modalities relating to various medical fields. I have also aided in proofreading and publication of manuscripts in accredited medical journals. I like to sketch, read and listen to music in my leisure time.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Saha, Nidhi. (2022, December 16). Enveloped viruses show greater cross-species transmission, according to new research. News-Medical. Retrieved on May 23, 2024 from https://www.news-medical.net/news/20221209/Enveloped-viruses-show-greater-cross-species-transmission-according-to-new-research.aspx.

  • MLA

    Saha, Nidhi. "Enveloped viruses show greater cross-species transmission, according to new research". News-Medical. 23 May 2024. <https://www.news-medical.net/news/20221209/Enveloped-viruses-show-greater-cross-species-transmission-according-to-new-research.aspx>.

  • Chicago

    Saha, Nidhi. "Enveloped viruses show greater cross-species transmission, according to new research". News-Medical. https://www.news-medical.net/news/20221209/Enveloped-viruses-show-greater-cross-species-transmission-according-to-new-research.aspx. (accessed May 23, 2024).

  • Harvard

    Saha, Nidhi. 2022. Enveloped viruses show greater cross-species transmission, according to new research. News-Medical, viewed 23 May 2024, https://www.news-medical.net/news/20221209/Enveloped-viruses-show-greater-cross-species-transmission-according-to-new-research.aspx.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Can virtual reality be the future of brain health? New research suggests VR exercise enhances working memory