New research identifies natural compounds with pan-SARS-CoV-2 inhibitory activity

A team of international scientists has recently conducted a cell-based high-content screening of over 300 natural compounds and identified three compounds with potent antiviral activities against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. The study has been published in Antiviral Research.

Study: Discovery of lead natural products for developing pan-SARS-CoV-2 therapeutics. Image Credit: PHOTOCREO Michal Bednarek/Shutterstock
Study: Discovery of lead natural products for developing pan-SARS-CoV-2 therapeutics. Image Credit: PHOTOCREO Michal Bednarek/Shutterstock

Background

SARS-CoV-2, the causative pathogen of coronavirus disease 2019 (COVID-19), has caused immense damage to the healthcare system, with over 660 million infections and 6.6 million deaths worldwide.

As a preventive measure, several vaccines have been developed and introduced globally. Initially, after deployment, these vaccines have shown high efficacy against COVID-19. However, with the emergence of SARS-CoV-2 variants of concern (VOCs), a significant drop in vaccine efficacy has been observed worldwide.

Therapeutic monoclonal antibodies developed against SARS-CoV-2 have also shown reduced efficacy against more aggressive VOCs, such as the omicron BA.5 subvariant. 

In the current study, scientists have applied cell-based high-content screening to a library of plant-, fungi-, bacteria-, and marine sponge-derived natural compounds to identify potent antiviral agents against SARS-CoV-2.

Screening of natural products

A total of 373 natural compounds with diverse chemical structures were screened using the mNeonGreen (mNG) reporter SARS-CoV-2 in a lung epithelial cell line. This led to identifying 26 compounds with more than 80% inhibitory potency against SARS-CoV-2.

Further screening of initially selected compounds led to identifying three compounds (holyrine A, alotaketal C, and bafilomycin D) with virus-inhibitory activity at nanomolar concentrations and favorable safety profiles.

These compounds were tested against highly transmissible omicron subvariants (BA.5, BA.2, and BA.1) and highly pathogenic delta variants. The findings showed that all three compounds could inhibit omicron subvariants and the delta variant at nanomolar or micromolar concentrations.

Among these compounds, alotaketal C is a protein kinase C (PKC) activator, and bafilomycin D is V-ATPase inhibitor. This suggests that these two compounds act as host-directed antivirals.

In this context, a separate set of experiments with known PKC activators and inhibitors showed that the activation and inhibition of PKC dose-dependently reduce and increase SARS-CoV-2 infection, respectively.

The activity of bafilomycin D as a host-directed antiviral was also tested in the study. The synergistic action of the compound was tested by using it in combination with N-0385, another well-established host-directed antiviral agent. N-0385 prevents SARS-CoV-2 infection by robustly inhibiting host protease TMPRSS2, which primes SARS-CoV-2 spike protein to facilitate viral entry into host cells.  

The treatment of omicron BA.2 subvariant-infected cells with bafilomycin D and N-0385, either separately or in combination, revealed that the drug combination has higher antiviral efficacy than the single treatment. In other words, both drugs act in synergy to inhibit omicron BA.2 infection.

Study significance

The study identifies three natural compounds (holyrine A, alotaketal C, and bafilomycin D) that can inhibit SARS-CoV-2 infection at nanomolar concentrations. Holyrine A is an alkaloid compound isolated from a marine actinomycete. Alotaketal C is a terpenoid compound isolated from the marine sponge Phorbas sp. Bafilomycin D is a member of the macrolide antibiotic family isolated from a Streptomyces sp. 

The compounds identified in the study have pan-SARS-CoV-2 inhibitory activity against omicron subvariants and the delta variant. The benefits of using natural antiviral compounds include fewer side effects, favorable toxicological profiles, and a faster clinical approval process than chemically-engineered drugs.

Overall, the study highlights the antiviral potency of natural compounds with diverse chemical structures. As mentioned by scientists, these compounds can be used as part of multidrug regimens to counteract the development of antiviral drug resistance.

Journal reference:
Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2023, January 12). New research identifies natural compounds with pan-SARS-CoV-2 inhibitory activity. News-Medical. Retrieved on September 07, 2024 from https://www.news-medical.net/news/20230112/New-research-identifies-natural-compounds-with-pan-SARS-CoV-2-inhibitory-activity.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "New research identifies natural compounds with pan-SARS-CoV-2 inhibitory activity". News-Medical. 07 September 2024. <https://www.news-medical.net/news/20230112/New-research-identifies-natural-compounds-with-pan-SARS-CoV-2-inhibitory-activity.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "New research identifies natural compounds with pan-SARS-CoV-2 inhibitory activity". News-Medical. https://www.news-medical.net/news/20230112/New-research-identifies-natural-compounds-with-pan-SARS-CoV-2-inhibitory-activity.aspx. (accessed September 07, 2024).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2023. New research identifies natural compounds with pan-SARS-CoV-2 inhibitory activity. News-Medical, viewed 07 September 2024, https://www.news-medical.net/news/20230112/New-research-identifies-natural-compounds-with-pan-SARS-CoV-2-inhibitory-activity.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Intranasal vaccine shows broad SARS-CoV-2 variant protection