New ‘smart patch’ can detect proinflammatory biomarkers of neurodegenerative diseases

NewsGuard 100/100 Score

A leading Swansea University scientist has developed a new 'smart patch' that can detect proinflammatory biomarkers of neurodegenerative diseases (such as Parkinson's and Alzheimer's) through the use of microneedle technology.

This breakthrough in the advancement of transdermal capability would mean 'smart patches' could be used to detect certain biomarkers within skin interstitial fluid (ISF) in a "bloodless" manner.

These patches are comprised of arrays of tiny needles (microneedles) designed to break the skin barrier – in a minimally invasive manner - and monitor the biomarkers of clinical significance. They can be self-administered for point of care diagnosis at GP practices or even at home. This innovative research has the potential to change the landscape of early neurodegenerative disease detection.

Dr Sanjiv Sharma, who previously developed the world's first COVID-19 'smart patch', comments:

"The skin is the largest organ in the body – it contains more ISF than the total volume of blood. This fluid is an ultrafiltrate of blood and holds biomarkers that complement other biofluids such as sweat, saliva, and urine. It can be sampled in a minimally invasive manner and used either for point of care testing or real time using microneedle devices.

We employed microneedle array-based biosensing patches as wearable transdermal sensors to detect the proinflammatory cytokine IL-6. IL-6 is present in the skin ISF with other cytokines and is implicated in many clinical states including neurodegenerative diseases and fatal pneumonia from SARSCoV 2. We have been able to detect IL-6 at concentrations as low as 1 pg/mL in synthetic skin ISF, indicating its utility for routine point of care, bloodless measurements in simpler settings, worldwide.

The devices we developed are scalable, and the resulting sensor has a short measurement time (6 minutes), with high accuracy and a low limit of detection. This new diagnostic tool, for screening of inflammatory biomarkers in point of care testing, will see the skin act as a window to the body and vital organs such as the brain."

This work was done in collaboration with Biomark, ISEP, Porto, Portugal.

Biomark ISEP Porto have pioneered applications of molecular imprinted polymers (MIPs) and extended them to different healthcare applications. Together with Swansea's expertise in transdermal diagnostics we have demonstrated that the MIPs together with the microneedle arrays offers a fantastic platform for the development of point of care devices for bloodless testing. These can be extended to diagnostics for cardiovascular, cancer and neurodegenerative disorders."

Felismina Moreira, Co-author, School of Engineering, Polytechnic Institute, Portugal

Swansea University is currently working with its research partners in UK, Portugal, France and Japan towards furthering the field of transdermal diagnostics and extending it for the development of diagnostic devices for a plethora of healthcare applications.

The paper titled 'Molecular Imprinted Polymers on Microneedle Arrays for Point of Care Transdermal Sampling and Sensing of Inflammatory Biomarkers' is published by American Chemical Society.

The IMPACT operation is part-funded by the European Regional Development Fund through the Welsh Government and Swansea University.

Journal reference:

Oliveira, D., et al. (2022) Molecular Imprinted Polymers on Microneedle Arrays for Point of Care Transdermal Sampling and Sensing of Inflammatory Biomarkers'. ACS Omega.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Personalized vitamin D guidelines based on latitude and skin type could tackle deficiencies