Testing the material used to build artery models

NewsGuard 100/100 Score

Testing the material used to build models of arteries reveals their suitability for use in medical education and surgical planning.

Hokkaido University researchers have analyzed the suitability of a smooth, flexible and transparent material used to make model arteries for use in medical teaching and to plan for surgery on individual patients. Their work is described in the Journal of Vascular and Interventional Radiology.

Ever-improving 3D printing technology can create models of blood vessels that are significantly more realistic than those made with more conventional methods, and also much more suitable for surgical practice than virtual simulations that have also been used. All types of models and simulations are applied in two key situations. They assist in medical education, allowing students of general medicine and of surgery to learn how to handle and manipulate blood vessels before applying their skills on patients. The sophistication of 3D printing also allows highly accurate models of an individual patient's artery and vein structure to be built from radiology scans, allowing practice on a model before performing complex surgery.

The Hokkaido team has improved assessment of the 3D printing technology by studying a material used to make model arteries that are transparent to allow careful inspection while recreating the flexibility, smoothness and slipperiness of real arteries. They tested the accuracy and suitability of the modeling materials by comparing its properties with pig arteries, measuring parameters including adhesive and tensile strength, compressibility and friction characteristics.

We hypothesized that a tailored 3D modeling material called Flexible 80A resin would effectively simulate the properties of real arteries. Our studies confirmed the material's suitability, while at the same time identifying differences between the model material and the pig arteries that could guide further improvements."

Ryo Morita, interventional radiologist, Hokkaido research group

The researchers point out future research that will be needed to address some limitations of this early work. Moving on to use real human arteries for comparison would improve the relevance for working on patients. The methods used in this initial study could also be applied to a variety of other modeling resins to identify those most suitable. They would also like to investigate how differences they identified in tensile strength between the models and the pig arteries might affect the use of the models by physicians.

While creating custom models for an individual patient can be of great assistance in preparing for surgery, it is expensive and time-consuming. This limits the use of personalized models to only the most anatomically challenging cases. "Making and storing models made with improved 3D printing processes could build a bank of examples for use in preoperative planning and for training," Morita concludes.

Source:
Journal reference:

Morita, R., et al. (2023). Mechanical Properties of a 3 Dimensional–Printed Transparent Flexible Resin Used for Vascular Model Simulation Compared with Those of Porcine Arteries. Journal of Vascular and Interventional Radiology. doi.org/10.1016/j.jvir.2023.01.008.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Placental DNA methylation patterns altered by pregnancy air pollution exposure, research reveals