New research may explain why premature lungs are sensitive to stress

NewsGuard 100/100 Score

Many premature infants need mechanical ventilation to breathe. However, prolonged ventilation can lead to problems like respiratory diseases or ventilation-induced injury.

Jonas Naumann and Mareike Zink study the physics of mechanical stress from ventilation at Leipzig University, in Leipzig, Germany and discovered some of the mechanisms that explain why premature lungs are especially sensitive to stress. Naumann will present their research at the 68th Biophysical Society Annual Meeting, to be held February 10 - 14, 2024 in Philadelphia, Pennsylvania.

When you breathe normally, your diaphragm and the muscles between ribs create a negative pressure inside the lung. "But when you are undergoing mechanical ventilation, you are creating hydrostatic overpressure. And the forces which are acting during mechanical ventilation are completely different than during normal breathing. And this is probably causing some kind of damage to the cells," Zink explained.

Using lung tissue from fetal and adult rats, the researchers together with collaborators from the Division of Neonatology, University Clinic Leipzig, used varying amounts of tension with rest phases in between, similar to the actions that occur within the lung during mechanical ventilation. Even with a little pressure, the premature rat lung tissue showed characteristics of being both elastic and viscous. This means the lung tissue changed its shape and responded to stress in a way that wasn't normal. Moreover, they found that "the fetal lung is much stiffer than the adult lung under deformation," said Naumann.

To determine whether these tension-related changes in the tissue led to alterations in sodium transport, which is important for removing the water from the lungs that is present at birth, the team used electrophysiology to measure the movement of ions across a layer of premature lung cells. They found that changes in pressure affected the activity of two channels involved in sodium transport-;the epithelial sodium channel and the sodium-potassium ion pump in the cells of lung alveoli. This disruption in the normal function of these transporters could explain why mechanical ventilation has negative effects on the infant's lungs.

This may be the reason why lung fluid cannot get absorbed that well into the circulation after the preterm births."

Jonas Naumann, Leipzig University

He hopes that there will be more research about what ventilator settings might lead to the best outcomes for preemies. Naumann points out that "small pressure gradients can have such a big impact on the lung mechanics."

The next phase of their research will be exploring how the lung tissue's extracellular matrix, the scaffolding and the glue that holds cells together, plays a role in mechanical ventilation. By better understanding how the premature lung responds to pressure, they hope that future studies improve therapies for babies born early.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Deciphering cancer plasticity:Insights from MSK research