Nanobodies herald a new era in cancer therapy

NewsGuard 100/100 Score

Cancer, along with heart and vascular disease, is the major cause of death in the Western world. The first generation of anti-cancer drugs has already saved many lives, but because these medicines are non-specific they also often have severe side effects.

Researchers at VIB (the Flanders Interuniversity Institute for Biotechnology) are now developing ‘nanobodies’ − a new generation of drugs consisting of extremely small antibodies that target tumor cells very specifically.

The vast majority of the current medicines for treating tumors − the so-called chemotherapeutics − are seldom specific. Indeed, because a chemotherapy treatment is not only toxic to cancer cells but to the body’s normal cells as well, patients often experience severe side effects. The VIB research team under the direction of Hilde Revets and Patrick De Baetselier (Department of Molecular and Cellular Interactions, Free University of Brussels) is searching − successfully − for new, specific, effective cancer therapies.

For several years now, the leading strategy in the treatment of cancer has been based on the production of antibodies, which are protective substances produced in the organism to defend against intruding foreign bodies − protecting us against infections arising from bacteria and viruses. Antibodies can also react with tumor-specific substances that appear only on the cancer cell membrane. These ingenious antibodies seek out and bind very specifically to the cancer cells. As a result, the tumor is removed in a highly targeted, specific manner. At the moment, ten such medicines are available to patients. But even though these antibody medicines are a good step in the right direction, there is clearly room for improvement. The antibodies that are being used are large proteins that have difficulty penetrating tumors. In addition, their complex structure makes large-scale production very difficult and expensive.

In order to cope with these problems, the VIB researchers are using camel antibodies. Extremely small compared to conventional antibodies, this unique class of antibodies has been renamed ‘nanobodies’. Having all the advantages of the conventional antibodies, nanobodies also have several more important characteristics: they are small and they keep their tumor-specific character. At the same time, they are very stable, soluble proteins that are much easier and less expensive to produce than conventional antibodies. So, researchers have recently begun to evaluate nanobodies as anti-cancer medicines. The first results look promising: in experiments conducted on mice, a tumor with a certain protein on its membrane was successfully counteracted through administration of a nanobody directed against this protein.

To translate these results into a possible application for humans, VIB is collaborating with Ablynx, a company established by VIB and GIMV in 2001 with the aim of marketing the nanobody technology. Today, Ablynx has already developed nanobodies against 16 different therapeutic targets that represent a wide range of diseases in humans. Two of these nanobodies are in the pre-clinical phase and, according to plan, will be ready to be clinically tested next year. These recent results are a new step toward the development of medicines based on nanobodies. In addition to cancer, other life-threatening diseases − such as certain inflammatory diseases, or heart and vascular diseases − are possibly eligible for a medical treatment with nanobodies.

VIB, the Flanders Interuniversity Institute for Biotechnology, is a research institute where 800 scientists conduct gene technological research in a number of life-science domains, such as human health care and plant systems biology. Through a joint venture with four Flemish universities (Ghent University, the Catholic University of Leuven, the University of Antwerp, and the Free University of Brussels) and a solid funding program for strategic basic research, VIB unites the forces of nine university science departments in a single institute. Via its technology transfer activities, VIB strives to convert the research results into products for the benefit of the consumer and the patient. VIB also distributes scientifically substantiated information about all aspects of biotechnology to a broad public.

For more information, please contact VIB’s Communication Department, (Ann Van Gysel and Sooike Stoops), tel: +32 9 244 66 11 [email protected], http://www.vib.be

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New microfluidic device improves the separation of tumor cells and clusters from malignant effusions