Trial of new therapy for pancreatic cancer

NewsGuard 100/100 Score

Patients in Liverpool are to trial a new therapy for pancreatic cancer - a disease which sees most sufferers die within a year of diagnosis.

One of the 10 most common cancers in the UK, it is among the most difficult to diagnose and treat and kills around 7,000 people each year. There are very few early symptoms so most patients present late and only around 15% are suitable for surgery - currently the only treatment available.

The Phase III TeloVac trial has been designed by the Pancreatic Cancer Clinical Sub-Group of the UK National Cancer Research Institute and will be run by Cancer Research UK's Liverpool Cancer Trials Unit.

Funded by Cancer Research UK, the trial will test the vaccine GV1001 alongside two chemotherapy drugs gemcitabine and capecitabine on patients with locally advanced and metastatic pancreatic cancer. GV1001 is a new immunotherapeutic drug for pancreatic cancer developed by Danish-based biotech company Pharmexa.

One of the trial's two principal investigators, Professor John Neoptolemos, based at the University of Liverpool and a consultant surgeon at the Royal Liverpool University Hospital, said: "The National Cancer Research Institute is very committed to this trial and is focusing a great deal of energy on recruiting patients to take part in it. This is because we firmly believe that GV1001 could play a key role in the future treatment of pancreatic cancer."

He added: "We're proud to manage this fundamental trial at the Liverpool Cancer Trials Unit and we hope other centres in the UK will participate in order to achieve maximum benefit for patients suffering from locally advanced and metastatic pancreatic cancer."

"GV1001 is a particularly attractive vaccine; the antigen that it targets is expressed on virtually all pancreatic cancer cells and the vaccine stimulates the production of all of the cells that are required for an effective immune attack upon these cancers. Adding it to the platform of chemotherapy is an exciting strategy which, if successful, would create a new standard of care in this disease."

Professor John Toy, Medical Director at Cancer Research UK, said: "New treatments are desperately needed for pancreatic cancer as survival rates are so poor. GV1001 is a new generation of agent that harnesses the body's own immune system to fight cancer. We are delighted to be funding a trial of such an innovative treatment."

Patients with non-resectable pancreatic cancer will be randomly distributed into one of three arms of the trial:

  • 370 patients will be treated with gemcitabine and capecitabine in a standard treatment
  • 370 patients will be treated first with gemcitabine and capecitabine for eight weeks, following which they will be treated with GV1001
  • 370 patients will be treated with gemcitabine and capecitabine and with GV1001 at the same time

The research team aims to find whether the patients treated with a combination of GV1001 and chemotherapy live longer than patients who only receive chemotherapy. It is not expected that GV1001 will cure patients, but that treatment will prolong their lives and that a small proportion of the patients may experience significantly longer survival.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Attenuated virus helps eliminate cancer in mice