New therapeutic platform technology tackles major diseases

NewsGuard 100/100 Score

A spin out company from basic structural biology, Asterion Ltd., has led to new technology that provides a way of creating therapeutic proteins to tackle major diseases such as cancer, diabetes and infertility.

The research was carried out at the University of Sheffield in laboratories supported by the Biotechnology and Biological Sciences Research Council (BBSRC). This work is reported in the current edition of BBSRC Business, the quarterly research highlights magazine of the Biotechnology and Biological Sciences Research Council.

Professor Richard Ross, Chief Scientific Officer of Asterion Ltd., said: "A big challenge for biological therapeutics is that they are broken down rapidly in the body. The technology developed by Asterion Ltd. is based on basic structural biology work that has provided us with the knowledge necessary to develop longer acting drugs. This is a major advantage for patients, as it means monthly injections rather than daily injections."

Professor Ross, along with fellow founding directors Professors Pete Artymiuk and Jon Sayers have shown that it is possible to engineer proteins that can intervene when there is a deficiency in hormones. Their initial experiments involved fusing different elements of hormone and receptor in order to treat a growth disorders such as short stature (a deficiency in growth hormone).

Professor Ross continued: "Our patented and versatile therapeutic platform technology ProFuse TM, could also tackle major diseases such as some cancers, anaemia, infertility and diabetes. Under normal circumstances hormones of the type known as cytokine hormones - growth hormone for example - circulate in the blood and are bound to proteins that prevent them from being degraded. The basic structural biology work we have done in the past means that we can see the interaction between the hormone and the binding protein in exquisite detail. Our understanding of this structural information means that we can rationally design drugs that consist of this pairing of hormone and binding protein that still allows them to activate the cell surface receptor. In this situation, the hormone portion of the drug is better protected in the circulation from degradation and so it has a much longer effective life in the body."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
From Puberty to Menopause: Clue’s CEO, Audrey Tsang on the Power of Femtech