Scientists develop walking robot that switches between different gaits by using 'chaos control'

NewsGuard 100/100 Score

In humans and animals, periodically recurring movements like walking or breathing are controlled by small neural circuits called "central pattern generators" (CPG). Scientists have been using this principle in the development of walking machines. To date, typically one separate CPG was needed for every gait. The robot receives information about its environment via several sensors - about whether there is an obstacle in front of it or whether it climbs a slope. Based on this information, it selects the CPG controlling the gait that is appropriate for the respective situation.

The robot developed by the G-ttingen scientists now manages the same task with only one CPG that generates entirely different gaits and which can switch between these gaits in a flexible manner. This CPG is a tiny network consisting of two circuit elements. The secret of its functioning lies in the so-called "chaos control". If uncontrolled, the CPG produces a chaotic activity pattern. This activity, however, can very easily be controlled by the sensor inputs into periodic patterns that determine the gait. Depending on the sensory input signal, different patterns - and thus different gaits - are generated.

The connection between sensory properties and CPG can either be preprogrammed or learned by the robot from experience. The scientists use a key example to show how this works: the robot can autonomously learn to walk up a slope with as little energy input as possible. As soon as the robot reaches a slope, a sensor shows that the energy consumption is too high. Thereupon, the connection between the sensor and the control input of the CPG is varied until a gait is found that allows the robot to consume less energy. Once the right connections have been established, the robot has learned the relation between slope and gait. When it tries to climb the hill a second time, it will immediately adopt the appropriate gait.

In the future, the robot will also be equipped with a memory device which will enable it to complete movements even after the sensory input ceases to exist. In order to walk over an obstacle, for instance, the robot would have to take a large step with each of its six legs. "Currently, the robot would not be able to handle this task - as soon as the obstacle is out of sight, it no longer knows which gait to use," says Marc Timme, scientist at the Max Planck Institute for Dynamics and Self-Organization. "Once the robot is equipped with a motor memory, it will be capable to use foresight and plan its movements".

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Tiktaalik fossil reveals key step in evolution of walking