Study on bacteria may help to develop treatment method for osteomyelitis

NewsGuard 100/100 Score

A surface molecule on bacteria that instructs bone cells to die could be the target for new treatments for bone disease, says a scientist speaking at the Society for General Microbiology's autumn meeting today.

Blocking the death signal from bacteria could be a way of treating painful bone infections that are resistant to antibiotics, such as those caused by Meticillin-resistant Staphylococcus aureus (MRSA).

Bone disease, or osteomyelitis, affects 1 in 5,000 people around the world. It can occur at any stage in life and attack any bone in the body, where it leads to progressive bone destruction.

Osteomyelitis is usually caused by the bacterium Staphylococcus aureus that lives commonly on human skin and in the nose. It can reach the bones through open wounds or during surgery and most often causes infections in people with compromised immune systems.

Research led by Dr. Steve Kerrigan from the Royal College of Surgeons in Ireland in collaboration with Trinity College Dublin has revealed that the ability of S. aureus to latch onto bone cells depends on a specific protein called Spa, which is presented on the bacterium's surface. Once attached to the bone cell, the bacteria transmit signals prompting the bone cell to commit suicide. This causes a gradual loss of bone cells leading to progressive bone destruction and weakening of the skeletal system.

Ms Tania Claro who is presenting the group's work explained how the group's findings could lead to new therapies for osteomyelitis. "Bacteria that do not have the Spa protein on their surface are unable to bind to bone cells, which prevents them from sending suicide messages," she said. "Blocking bacterial attachment to cells via Spa could therefore be a way of treating osteomyelitis, or even preventing it in the first place."

Therapies that could effectively prevent and/or treat osteomyelitis could greatly improve the quality of life of sufferers. "This disease is very painful for patients and frustrating for both them and their doctors." explained Ms Claro. Current treatment involves prolonged aggressive antibiotic therapy, however this approach is often less than successful and surgical debridement is required.

New treatments for the disease that do not rely on existing antibiotics would be advantageous. "The danger of invasive bacterial disease is compounded by the rapid emergence of multi-drug resistant bacteria worldwide," explained Ms Claro. "The findings of this study will help develop better diagnostic tools and treatments for osteomyelitis that will not over-rely on antibiotics."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals strategy for promoting selective inhibition of multidrug-resistant bacteria