New mechanism controlling transmission of abnormal signal at origin of several cancers identified

NewsGuard 100/100 Score

This mechanism is a potential therapeutic target for the treatment of some of the deadliest cancers

Researchers at the Institute for Research in Immunology and Cancer (IRIC) of the Universit- de Montr-al have identified a new mechanism controlling the transmission of an abnormal signal at the origin of several cancers. In an article published in the journal Cell, Marc Therrien's team explains the recent discovery of a protein complex that controls the RAS/MAPK signalling pathway, responsible for some of the deadliest cancers, including pancreatic, colon and lung cancers, and melanomas. This regulating mechanism could prove to be a promising therapeutic target for the treatment of these diseases. The study conducted on the drosophila model organism is to be verified in humans in a forthcoming step.

Marc Therrien and his team focus their research on the RAS/MAPK signalling pathway, which is deregulated in several tumours. To send a message to the cell, the information must be relayed by proteins contained in this signalling pathway. In the case of the RAS/MAPK pathway, the message is given by RAS and the last protein in the pathway, MAPK, transmits the message to the cell's control centre, the nucleus. However, the RAS/MAPK pathway sometimes transmits erroneous messages which cause the cell to proliferate non-stop.

"Our study shows that a protein complex, EJC, controls production of the MAPK protein, which acts directly on the cell. When this complex is deficient, the signalling pathway is inhibited which restricts the chaotic proliferation of the cell at the origin of many cancers," Marc Therrien explains. "If we target EJC and the factors that regulate its activity, we could potentially prevent the transmission of abnormal signals that trigger several cancers."

In addition to serving as a promising therapeutic target for treating cancer, the regulating mechanism discovered for MAPK could also apply to several other genes. "Our research could serve to explain the production of other proteins with a behaviour similar to MAPK. This mechanism could help us to understand gene expression in general," Marc Therrien concludes.

The breakthrough was made possible by the SOLiD- Next Generation Sequencing System manufactured by Life Technologies, which enabled the researchers to view the overall consequences of the elimination of EJC on the expression of all of the cell's genes. "IRIC has adopted a cutting-edge technological infrastructure, without which this kind of work would be impossible," explains Dr. Guy Sauvageau, Chief Executive Officer and Scientific Director of the IRIC. "The Life Technologies sequencing equipment allows us to perform cutting-edge research by quickly obtaining accurate and complete results."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Diets rich in protein and anti-inflammatory foods may guard against cognitive decline