Roche RTCA HT Instrument allows fully-automated impedance screens for GPCRs

NewsGuard 100/100 Score

Label-free technologies have entered the stage of cellular drug discovery and high-throughput screening (HTS). For the measurement of G protein-coupled receptor (GPCR) activation electrical impedance represents an excellent universal readout technology, since different signaling pathways can be measured in one assay format using recombinant as well as primary cells. The recently developed xCELLigence RTCA HT Instrument from Roche Applied Science (SIX: RO, ROG; OTCQX: RHHBY) now allows to perform fully-automated impedance screens for GPCRs and other targets in the 384-well high-throughput format.

In a recent case study, Urs Lüthi and John Gatfield from Actelion Pharmaceuticals Ltd., Allschwil, Switzerland, integrated 2 RTCA HT (real-time cell analyzer for high-throughput) Instruments on an automated high-throughput screening platform from Agilent Technologies (Santa Clara, US). 263 antagonist hits of the orexin type 1 (Ox1) GPCR that had been identified in a classical calcium flux (FLIPR) HTS were screened for Ox1 inhibition in fully-automated RTCA HT assays. The overall performance, the quality of E-Plates 384 and intra- and inter-assay reproducibility were evaluated. 65% of the 263 antagonist hits were confirmed to be Ox1 receptor antagonists after impedance measurements. According to the researchers, the RTCA HT Instrument could be readily integrated into automated workflows and delivered a highly reproducible data set, making the RTCA HT Instrument a powerful screening technology.

Compared to standard readout technologies one of the major advantages of label-free technologies is that cellular processes are measured in real-time kinetics in a non-invasive manner. The xCELLigence System uses gold electrodes at the bottom surface of microplate wells as sensors to which an alternating current is applied. Cells that are grown as adherent monolayers on top of such electrodes influence the alternating current at the electrodes by changing the electrical resistance (impedance). The degree of this change is primarily determined by the number of cells, strength of the cell-cell interactions, interactions of the cells with the microelectrodes and by the overall morphology of the cells.

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Balancing diets: study reveals plant protein's impact on nutrient levels in Americans