Researchers uncover 22 new genes linked with autism, other neurodevelopmental disorders

NewsGuard 100/100 Score

When chromosomes replicate, sometimes there is an exchange of genetic material within a chromosome or between two or more chromosomes without a significant loss of genetic material. This exchange, known as a balanced chromosomal abnormality (BCA), can cause rearrangements in the genetic code.

Researchers from 15 institutions in three countries including Brigham and Women's Hospital (BWH), Massachusetts General Hospital, Harvard Medical School, and the Broad Institute found that due to these rearrangements, BCAs harbor a reservoir of disruptions in the code that could lead to autism and other neurodevelopmental disorders. The researchers also uncovered 22 new genes that may contribute to or increase the risk of autism or abnormal neurodevelopment.

The study will be published in the print issue of Cell on April 27, 2012.

The researchers used a strategy that involved directly sequencing BCAs to reveal genes at the breakpoints and show that these genes are related to autism and other neurodevelopmental disorders.

This study is part of a larger, ongoing collaborative endeavor, the Developmental Genome Anatomy Project (DGAP), to identify genes critical in human development.

The researchers discovered that the genetic code can be disrupted at various distinct sites and still result in autism. The disruptions occur in several different groups of genes, including those already individually suspected to be associated with abnormal neurodevelopment; those which illuminate a single gene as important in large regions previously defined as genomic disorders; as well as those associated with psychiatric disorders that can have much later onset than neurodevelopmental disorders.

"BCAs provide a unique opportunity to pinpoint a gene and validate it in a disorder," said Cynthia Morton, PhD, BWH director of cytogenetics, and principal investigator of DGAP. "These discoveries can illuminate biological pathways that may be a window to a new therapy. We are all grateful to the individuals and their families who make these fundamental findings possible through their participation as subjects in these studies."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study unveils novel bladder cancer diagnostic model based on key mitochondrial genes