Scientists halt tumour development through genetic manipulation of cytoskeleton in fly tissues

NewsGuard 100/100 Score

Cancer is a complex disease, in which cells undergo a series of alterations, including changes in their architecture; an increase in their ability to divide, to survive and to invade new tissues or metastasis. A category of genes, called oncogenes, is critical during cancer progression, as they codify proteins whose activity favours the development of cancer. One of these molecules, Src, is implicated in a large number of human cancers. However, it is still not clear how healthy cells constrain its activity not to become tumorous. In the latest issue of the journal Oncogene*, Florence Janody and her team at the Instituto Gulbenkian de Ci-ncia (IGC, Portugal), (http://www.igc.gulbenkian.pt/pages/groups.php/A=73___collection=groups___group=1), identified a novel mechanism by which the activity of Src is limited by the cell's skeleton (named cytoskeleton) limiting the development of tumours.

Using the fruit fly, Drosophila melanogaster, as a model, Florence Janody and her team were able to stop the tumour development induced by the high activity of Src through the genetic manipulation of the cytoskeleton in fly tissues. A major component of the cytoskeleton, the actin protein, form cables that crisscross the cell, creating a network, where molecules can move, inside the cell. These cables are constantly being elongated and shortened at their ends in a process tuned by molecules called actin-Capping Proteins. Florence Janody-s team showed that the development of tumours is stopped in the presence of high levels of the actin Capping Protein. This "tuner" restrains the activity of proteins that are usually activated by high levels of Src. Although the precise molecular mechanism is still unknown, the hypothesis raised by these scientists is that the "tuner" creates a tension in the cables of the cytoskeleton that impedes the action of these proteins. Conversely, the activity of Src is higher when the levels of the actin Capping Protein are lower, as the proteins activated by Src are able to escape the blocking effect of the network and act in the cell, resulting in the development of tumours. Thus, when the cytoskeleton network is not tightly regulated, the activity of oncogenes such as Src is not trapped and tumour development is observed.

Florence Janody says: "The cytoskeleton works as a "barbwire" network. The winner of the competition between molecules of the "barbwire" network and the Src oncogene, which fights against it, will determine whether the cell will stay healthy or become a cancer cell.

Beatriz Garc-a Fern-ndez and Barbara Jezowska, first authors of this work added: "Our work suggests that the appearance of mutations in molecules that regulate the skeleton may play a significant role in inducing cancer development during the early stages of the disease by releasing the activity of oncogenes."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Meta-analysis uncovers stress-responsive genes in Arabidopsis