Scientists explore mechanisms of viruses' shells

Viruses are like small vessels containing an active component, the genetic material, that can infect a host cell. The vessel, called capsid or vector, is basically a shell that changes its shape when it penetrates a cell to infect it, and may even break into pieces. The research team, that includes Guido Polles and Cristian Micheletti of SISSA, carried out computer simulations and used theoretical models to understand how such 'vessel' responds to thermal and mechanic stimulations. In such a way they identified the weak points of capsids and inferred their spontaneous assembly process.

Each shell is made of numerous protein 'tiles' that spontaneously join up like Lego pieces. A capsid may be composed of hundreds of such subunits, but each 'tile' consists of a limited number of proteins. The edges of the tiles are the "weak" lines where the deformation of the general structures takes place and along which the shell fragments if broken. Experimental observations have been carried out for some types of viruses to understand the internal dynamic of the vector (deformation) and the shape of the single tiles (which is usually rather regular - pentagons, hexagons, triangles). Micheletti and his colleagues produced a virtual model that, in principle, may be applied to any virus whose structure is known.

"Starting from the available information on the molecular structure of the capsid, we tried to 'tease' it a little to see the way it changed its shape. By simulating thermal fluctuations (to put it more simply, we virtually heated and then cooled it) observing along which lines the shell would modify. It is very likely that these very lines are also the spots in which the capsid will tend to break up." explained Polles and Micheletti. "Our model turned out to be very robust. The simulations, in fact, reproduced the same conditions observed in the experiments on known capsids. For this reason we have made other speculations on capsids on which we have no direct knowledge in this sense."

The research, carried out alongside with University of York (UK), Universit- di Torino and the Max Planck Institute of Mainz (Germany), was published in Plos Computational Biology. The studies on the nature of viral capsids are important to understand the mechanisms of virus infection (and to study methods to fight it).

Viral vectors, besides, are used in pharmacology and in gene therapy. The viruses' shells in fact may be employed as vectors to insert a therapy directly into cells, a cutting-edge methodology in today's medicine. Being able to identify the mechanically weak spots may be exploited, in perspective, to modify the natural capsids optimizing their resilience to convey and deliver the pharmacologic content more effectively.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Gene editing with CRISPR may introduce new defects