CotH protein mediates fungal invasion of host cells during mucormycosis

Opportunistic infection of individuals on immunosuppressive therapy are a major problem for patient outcome, despite current prophylactic strategies. While the ability to prevent infection with well-characterized pathogens has improved, infection by less-known microbes have been on the rise. One such example is the increasing occurrence of mucormycosis, a life-threatening infection caused by Mucorales fungi. A defining characteristic of Mucorales is the ability to invade host cells via interaction with glucose-regulated protein 78 (GRP78) on the surface of endothelial cell.

In this issue of the Journal of Clinical Investigation, Ashraf Ibrahim and colleagues at the University of California, Los Angeles identified spore coat protein homologues (CotH) on the surface of Mucorales fungi as the ligand for GRP78 and that gene encoding these proteins are unique to Mucorales. Furthermore, loss of CotH in the Mucorales fungi Rhizopus oryzae decreased invasion and virulence.

In a companion commentary, J. Andrew Alspaugh of Duke University discusses the potential of targeting CotH proteins for prevention and treatment of mucormycosis.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

Sign in to keep reading

We're committed to providing free access to quality science. By registering and providing insight into your preferences you're joining a community of over 1m science interested individuals and help us to provide you with insightful content whilst keeping our service free.

or

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Piezo1 identified as key trigger for tension driven skin expansion