Cancer Research UK, CRT partner with Asterias to trail novel immunotherapy treatment for lung cancer

NewsGuard 100/100 Score

CANCER RESEARCH UK and Cancer Research Technology (CRT), the charity's development and commercialisation arm, have reached an agreement with Asterias Biotherapeutics, Inc. (OTCBB: ASTY), a biotechnology company in the emerging field of regenerative medicine, to take forward Asterias' novel immunotherapy treatment AST-VAC2 into clinical trials in subjects with non-small cell lung cancer.

AST-VAC2 represents the tenth treatment to enter Cancer Research UK's Clinical Development Partnerships (CDP) scheme, with six having progressed into the clinic to date. CDP is a joint initiative between Cancer Research UK's Drug Development Office (DDO) and Cancer Research Technology, to develop promising anti-cancer agents which pharmaceutical companies do not have the resources to progress through early phase clinical trials.

AST-VAC2 is a non-patient specific (allogeneic) cancer vaccine designed to stimulate patients' immune systems to attack telomerase, a protein that is expressed in over 95 percent of cancers but is rarely expressed in normal adult cells.

The vaccine was developed following successful early phase clinical trials of a similar, patient specific (autologous) Asterias vaccine, called AST-VAC1, which was derived from patients' blood cells and tested in prostate cancer and acute myeloid leukemia.

Unlike AST-VAC1, and other autologous (patient specific) vaccines that are developed from a patient's own cells, AST-VAC2 is derived from human embryonic stem cells (hESCs), meaning it can be produced on a large scale and stored ready for use, rather than having to produce a specific version of the drug for each patient.

The trial of AST-VAC2 will evaluate the safety and toxicity of the vaccine, feasibility, stimulation of patient immune responses to telomerase and AST-VAC2, and clinical outcome after AST-VAC2 administration in patients with resected early-stage lung cancer and in patients with advanced forms of the disease.

Pedro Lichtinger, Asterias' chief executive officer, said: "The Asterias collaboration with Cancer Research UK's Drug Development Office and CRT represents a major step in advancing our proprietary dendritic cell platform for the potential benefit of patients.

"AST-VAC2 is based on a specific mode of action that is complementary and potentially synergistic to other immune therapies. We are delighted to partner with Cancer Research UK to advance this important platform through Phase 1/2 clinical trials. Cancer Research UK's Drug Development Office has the global recognition of having the quality, capability and track record of successfully advancing development programs. We are excited about the possibility of favorably impacting the lives of patients across multiple cancers and are proud to be working with Cancer Research UK."

Under the agreement, Asterias will complete development of the manufacturing process for AST-VAC2. Cancer Research UK will then produce the vaccine and conduct the phase 1/2 clinical trial in the UK. On completion of the clinical trial, Asterias will have an exclusive first option to acquire a license to the data from the trial on pre-agreed terms including an upfront payment, milestones and royalties on sales of products. If Asterias declines this option, CRT will then have an option to obtain a license to Asterias' intellectual property to continue the development and commercialisation of AST-VAC2 and related products in exchange for a revenue share to Asterias of development and partnering proceeds.

Dr. Jane Lebkowski, president of research and development at Asterias, said: "The use of human embryonic stem cells to derive allogeneic dendritic cells for cancer immunotherapy has the potential to dramatically improve the scalability, consistency, and feasibility of cellular cancer vaccines. We believe this collaboration will enable the acceleration of clinical studies of AST-VAC2 and the collection of important proof-of-concept data for the entire human embryonic stem cell-derived dendritic cell immunotherapy platform."

Nigel Blackburn, Cancer Research UK's Director of Drug Development, said: "Recent advances in cancer immunotherapy have demonstrated the exciting potential of these treatments to improve outcomes in devastating diseases such as lung cancer. Better treatment options for lung cancer are badly needed and it is through collaborations such as this that we can save more lives sooner."

Conference Call and Webcast Details

Asterias will host a conference call and webcast tomorrow, September 12, 2014, at 8:30 a.m. ET/ 5:30 a.m. PT.

For both "listen-only" participants and those participants who wish to take part in the question-and-answer portion of the call, the dial-in number in the U.S. is 877-407-8291. For participants outside the U.S., the dial-in number is 201-689-8345. To access the live webcast, go to http://wsw.com/webcast/cc/astb2.

A replay of the conference call will be available for seven business days beginning about two hours after the conclusion of the live call. The telephone dial-in number for U.S. participants is 877-660-6853. For participants outside the U.S., the replay dial-in number is 201-612-7415. An archived webcast will also be available for 30 days, and may be accessed at http://wsw.com/webcast/cc/astb2.

 

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research pinpoints key pathways in prostate cancer's vulnerability to ferroptosis