Scientific collaboration reveals encouraging insight on AMD disease

NewsGuard 100/100 Score

Insilico Medicine along with scientists from Vision Genomics and Howard University shed light on AMD disease, introducing the opportunity for eventual diagnostic and treatment options.

The scientific collaboration between Vision Genomics, Inc., Howard University, and Insilico Medicine, Inc., has revealed encouraging insight on the AMD disease using an interactome analysis approach. Resources such as publicly available gene expression data, Insilico Medicine's original algorithm OncoFinderTM, and AMD MedicineTM from Vision Genomics allowed discovery of signaling pathways activated during AMD disease.

"We are thrilled to collaborate with Alex Zhavaronkov and Evgeny Makarev, and their team at InSilico Medicine. Big Data analysis is part of the future of medicine, and with our technique of signaling pathway activation analysis, we will decipher the genetic network alterations that lead to age-related macular degeneration (AMD), and eventually human aging itself", said Antonei Benjamin Csoka, PhD, CEO of Vision Genomics, LLC, and Assistant Professor at Howard University.

The research publication titled "Pathway activation profiling reveals new insights into Age-related Macular Degeneration and provides avenues for therapeutic interventions" was accepted by one of aging research's top-rated journals "Aging", detailing these findings and methodology. This study not only validates the efficacy of interactome analysis within aging, but also allows the investigation of cellular populations within AMD models.

"We are happy to collaborate with Antonei Benjamin Csoka's teams at both Vision Genomics and Howard University on this exciting project. Coupling Big Data with advanced signaling pathway activation analysis may help find new therapeutic approaches for age-related macular degeneration (AMD), a disease that holds many keys to understanding human aging", said Evgeny Makarev, PhD, Director of Aging Research at Insilico Medicine.

On December 9th Insilico Medicine, Inc announced the appointment of 2013 Nobel Laureate in Chemistry, Michael Levitt, to its Scientific Advisory Board. Dr. Levitt's background in computational modeling focused on understanding protein folding processes and molecular interactions, may turn to be extremely valuable for compound discovery related to AMD and other age-related diseases. The concept utilized by Insilico Medicine involves identifying the difference between several signaling states on a tissue-specific level, be it health and disease, or young and old, and evaluating a large number of drugs and drug combinations that can modulate the difference using advanced parametric and machine-learned algorithms. "To create more value from our predictions we will need to identify compounds that are even more effective than top-scoring drugs and that would require multi-scale modeling of macromolecules, the field pioneered by Dr. Michael Levitt ", said Alex Zhavoronkov, PhD, CEO of Insilico Medicine, Inc. Insilico Medicine continues to be represented from top institutions, including Stanford University, Johns Hopkins University, and New York University. With this broad range of expertise, Insilico and its collaborators will pursue AMD disease further and utilize the newly discovered activated pathways as a foundation.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Targeted ocular spectroscopy shines new light on retinal health