Scientists reveal key insight into how immune system recognises TB

NewsGuard 100/100 Score

Every 18 seconds someone dies from tuberculosis (TB). It is the world's most deadly infectious disease.

Mycobacterium tuberculosis, the causative agent of TB, has infected over one-third of the entire human population with an annual death toll of approximately 1.5 million people.

For the first time, an international team of scientists from Monash and Harvard Universities have seen how, at a molecular level, the human immune system recognises TB infected cells and initiates an immune response. Their findings, published in Nature Communications, are the first step toward developing new diagnostic tools and novel immunotherapies.

Lead author, Professor Jamie Rossjohn says one of the main reasons for our current lack of knowledge comes down to the complexity of the bacterium itself. Working with Professor Branch Moody's team at Harvard, they have begun to gain key insight into how the immune system can recognise this bacterium.

Crucial to the success of M. tuberculosis as a pathogen is its highly unusual cell wall that not only serves as a barrier against therapeutic attack, but also modulates the host immune system. Conversely, its cell wall may also be the "Achilles' heel" of mycobacteria as it is essential for the growth and survival of these organisms. This unique cell wall is comprised of multiple layers that form a rich waxy barrier, and many of these lipid -- also known as fatty acids -- components represent potential targets for T-cell surveillance.

Specifically, using the Australian Synchrotron, the team of scientists have shown how the immune system recognises components of the waxy barrier from the M. tuberculosis cell wall.

"With so many people dying from TB every year, any improvements in diagnosis, therapeutic design and vaccination will have major impacts," Professor Moody says.

"Our research is focussed on gaining a basic mechanistic understanding of an important biomedical question. And may ultimately provide a platform for designing novel therapeutics for TB and treat this devastating disease," Professor Rossjohn concludes.

Source: Monash University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Pregnant women show significant immune system changes linked to gut microbiome