UCI researchers create unique VMT platform with potential for anti-cancer drug screening

NewsGuard 100/100 Score

Led by UCI professor of molecular biology & biochemistry Christopher C.W. Hughes, the research team successfully established multiple vascularized micro-organs on an industry-standard 96-well plate. Hughes and the study's first author, Duc T. T. Phan, showed that these miniature tissues are much better at reproducing human drug responses than previous model systems. Hughes and his group have shown how the flow of a blood substitute through the vascular network they created can deliver nutrients to multiple kinds of tissues, including heart, pancreas, brain and various tumors.

"This is truly a unique platform - we have recreated in a dish the key element common to all tissues, which is that they depend on blood vessels for their survival. This feature is missing in all previously described in vitro organ cultures," Hughes said.

Hughes' team was also able to establish a functional vascularized microtumor (VMT) within the 96-well plate system and demonstrated its potential for anti-cancer drug screening. Working with a panel of FDA-approved anti-cancer drugs and a human colon cancer, they found that the VMT platform could accurately identify drugs that target the tumor cells, the vessels that supply them, or both.

"This is a major breakthrough", continued Dr. Hughes, "For the first time we can identify in the same assay drugs that target both tumor cells and the vessels that feed them."

Source: University of California - Irvine

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research pinpoints key pathways in prostate cancer's vulnerability to ferroptosis