Research illuminates how primary colorectal tumors contribute to premetastatic 'niche' formation

NewsGuard 100/100 Score

Primary colorectal tumors secrete VEGF-A, inducing CXCL1 and CXCR2-positive myeloid-derived suppressor cell (MDSC) recruitment at distant sites and establishing niches for future metastases, report Medical University of South Carolina (MUSC) investigators in an article published online ahead of print on April 28, 2017 by Cancer Research. Liver-infiltrating MDSCs help bypass immune responses and facilitate tumor cell survival in the new location. This research illuminates mechanisms by which primary tumors contribute to premetastatic niche formation and suggests CXCR2 antagonists may reduce metastasis.

Recent cancer research shows that premetastatic 'niches' form at sites far from the original tumor before new tumors occur. In colorectal cancer (CRC), these supportive microenvironments form in preferred secondary organs, such as the liver and lung, and facilitate the colonization, survival, and growth of metastasizing tumor cells. However, the mechanisms responsible for the formation of these premetastatic 'niches,' including what role(s) the primary tumor may play, are not well understood. It is critical to better understand the mechanics of CRC metastasis, as it is the second leading cause of cancer deaths in the US and patients with advanced cases often die because current treatments for widely metastasized disease are not effective.

MUSC investigators led by Raymond N. DuBois, M.D., Ph.D., dean of the MUSC College of Medicine and professor of Biochemistry and Molecular Biology, have now illuminated how primary CRC tumors contribute to premetastatic 'niche' formation.

"The idea that some sort of 'priming' needs to take place for metastasis to occur in distant organs - that there is some sort of activity in the future tumor location - is not new. But most research has focused on growth factors, chemokines and pro-inflammatory cytokines. There hasn't been much work looking at immune cell activity in distant organs prior to metastasis," explains DuBois. "We knew that the type and density of immune cells in the primary tumor plays a role in progression. For example, when more immature myeloid cells are present in the tumor, it becomes resistant to immune attack. But we didn't know what to expect in a metastatic model."

To explore this area, the team first evaluated whether the presence of a primary tumor affected immune cell profiles in premetastatic liver and lung tissues of mice. They found that the presence of a primary cecal tumor caused MDSCs to begin infiltrating the liver before metastasis began. Working backward from this finding, they used a series of experiments to reveal the chain of events that led up to MDSC infiltration.

Because CXCR2 is essential for drawing MDSCs out of the bloodstream and toward CRC tumors and colonic mucosa, the team began looking for CXCR2 and its ligands (CXCL1, CXCL2, and CXCL5) in mouse liver tissue. The team not only found that the ligand, CXCL1, attracted MDSCs from the bloodstream into premetastatic liver tissue, but also that administering a CXCR2 antagonist inhibited CXCL1 chemotaxis. This demonstrated that CXCR2 is required for CXCL1 to induce MDSC liver infiltration. In other words, the CXCL1-CXCR2 axis is required to recruit MDSCs to the liver. Importantly, they also found that liver- infiltrating MDSCs secrete factors that promote cancer cell survival and metastatic tumor formation without invoking the innate and adaptive immune responses.

Next, because VEGF is known to induce CXCL1 expression in lung cancer, the research team examined whether VEGF secreted by CRC tumors also regulated CXCL1 expression. Their results demonstrated that VEGF-A secretion by primary CRC tumor cells stimulates macrophages to produce CXCL1. Interestingly, although VEGF-A knockdown inhibited liver metastasis, it did not affect the growth of the primary tumor.

"We did not expect to find that a primary tumor could affect a distant organ before any of the cancer cells arrived on site," says DuBois. "We were surprised to see these changes before a single metastatic cell took up residence."

Together, these studies reveal that VEGF-A secreted by the primary CRC tumor stimulates macrophages to produce CXCR1, which recruits CXCR2-expressing MDSCs from the bloodstream into healthy liver tissue. The MDSCs then create a premetastatic 'niche' or micro-environment where cancer cells can grow to form new tumors. These results demonstrate for the first time that cells in the primary tumor contribute to forming distant pre-metastatic 'niches' which facilitate the spread of disease.

"Now that we know the primary tumor puts things in motion remotely prior to metastasis, we should be able to inhibit this process and have a positive impact on survival," explains DuBois. "We now know which molecules and immune cells are involved and that if we disrupt the CXCL1-CXCR2 axis we can possibly reduce the spread of disease. Both antibodies and small molecules can inhibit this pathway, but they have not yet been optimized. I hope these findings will speed up the development of inhibitors of the CXCR2 pathway."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research confirms no association between SARS-CoV-2 and childhood asthma diagnoses