Japanese scientists uncover new genetic marker for schizophrenia

NewsGuard 100/100 Score

Japanese scientists find a rare genetic variant that shows strong association with schizophrenia

Schizophrenia is a complicated disease that often appears in early adulthood. Although scientists have not traced the genetic causes, more than 80% of schizophrenia cases are considered to have a hereditary cause. In a new report published in Translational Psychiatry, Japanese researchers report that a rare genetic variant, RTN4R, may have a fundamental role in the disease.

"Schizophrenia is a disease caused by disturbances in neural circuits. Myelin-related genes are associated with the disease," explains Osaka University Professor Toshihide Yamashita, one of the authors of the studies.

Myelin acts as a conductor of signals for the neural circuits. Yamashita hypothesized that myelin-related genes could contribute to the pathology of schizophrenia.

RTN4R is a subunit of RTN4, which regulates crucial functions for neural circuits, namely, axon regeneration and structural plasticity.

Moreover, "RTN4 is a promising candidate gene for schizophrenia because it is located at chromosome 22q11.2, a hotspot for schizophrenia," he said.

Rare variants describe mutations that have low frequency but a large effect. Yamashita and his colleagues searched for rare variants of RTN4. Screening the DNA of 370 schizophrenia patients, he found a single missense mutation, R292H, that changed the amino acid of this protein from arginine to histidine in two patients.

R292H is located in the domain of RTN4R that binds to ligands, so a change in even a single amino acid could have profound effects on RTN4 function (Figure 1). To test this possibility, the scientists expressed the mutation in chick retinal cells, which only weakly express the gene, finding a significant change in myelin-dependent axonal behavior (Figure 2). Computer simulations showed that the mutation reduced the interaction between RTN4 and its partner protein, LINGO1, by increasing the distance between the two.

Yamashita is convinced that rare variants could act as risk factors for schizophrenia.

"There is growing evidence that rare variants contribute to neurodevelopment diseases. The R292H mutation was not found in any existing databases. Our findings strengthen the evidence that rare variants could contribute to schizophrenia," he said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals human gut plasmid with biomarker potential