New DNA vaccine strategy protects mice against lethal challenge by multiple H3N2 viruses

NewsGuard 100/100 Score

Researchers developed a novel DNA influenza vaccine based on four micro-consensus antigenic regions selected to represent the diversity of seasonal H3N2 viruses across decades. The DNA vaccine protected mice against a lethal challenge with more than one influenza-A H3N2 virus and protected them from severe H3N2-related illness despite the lack of an exact sequence match between the vaccine immunogen and H3 immunogen. The findings are reported in a new Special Issue on DNA Vaccines in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

David Weiner, The Wistar Institute of Anatomy & Biology, Philadelphia, PA, and coauthors from Wistar and Inovio Pharmaceuticals, Plymouth Meeting, PA conducted the study entitled "A Synthetic Micro-Consensus DNA Vaccine Generates Comprehensive Influenza-A H3N2 Immunity and Protects Mice Against Lethal Challenge by Multiple H3N2 Viruses." This new DNA vaccine strategy was intended to elicit a comprehensive immune response and to represent a step forward in eliminating the need to reformulate a seasonal vaccine each year to protect against influenza-A H3N2.

The researchers designed a vaccine designed to elicit broad immune responses against diverse influenza-A H3N2 viruses by engineering four synthetic hemagglutinin H3 immunogens. The H3 sequences used were chosen by aligning sequences from 233 influenza-A H3N2 strains representing viruses from across multiple decades. The researchers identified four micro-consensus sequences with sufficient sequence similarity to predict cross-reactive immune responses against diverse H3N2 strains.

"Influenza continues to be a major cause of morbidity and mortality worldwide, as the virus continuously changes to evade the human immune system," says Editor-in-Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School, Worcester, MA. "The approach developed by the Wistar Institute team holds great promise as a means to elicit an immune response that the virus will not evade."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Seasonal influenza triggers significant school closures, especially in southern states, study finds